scispace - formally typeset
Search or ask a question

Showing papers on "Endosperm published in 2008"


Journal ArticleDOI
TL;DR: New bioinformatics PageMan and MapMan tools developed in barley have been successfully used to investigate in detail the transcriptome relationships between seed maturation and germination in an important crop plant.
Abstract: Plant seeds prepare for germination already during seed maturation. We performed a detailed transcriptome analysis of barley (Hordeum vulgare) grain maturation, desiccation, and germination in two tissue fractions (starchy endosperm/aleurone and embryo/scutellum) using the Affymetrix Barley1 GeneChip. To aid data evaluation, Arabidopsis thaliana MapMan and PageMan tools were adapted to barley. The analyses allow a number of conclusions: (1) Cluster analysis revealed a smooth transition in transcription programs between late seed maturation and germination within embryo tissues, but not in the endosperm/aleurone. (2) More than 12,000 transcripts are stored in the embryo of dry barley grains, many of which are presumably activated during germination. (3) Transcriptional activation of storage reserve mobilization events occurs at an early stage of germination, well before radicle protrusion. (4) Key genes of gibberellin (GA) biosynthesis are already active during grain maturation at a time when abscisic acid peaks suggesting the formation of an endogenous store of GA in the aleurone. This GA probably acts later during germination in addition to newly synthesized GA. (5) Beside the well-known role of GA in gene activation during germination spatiotemporal expression data and cis-element searches in homologous rice promoters confirm an equally important gene-activating role of abscisic acid during this developmental period. The respective regulatory webs are linked to auxin and ethylene controlled networks. In summary, new bioinformatics PageMan and MapMan tools developed in barley have been successfully used to investigate in detail the transcriptome relationships between seed maturation and germination in an important crop plant.

256 citations


Journal ArticleDOI
TL;DR: Together, data suggest that AGL62 suppresses cellularization during the syncytial phase of endosperm development and thatendosperm cellularization is triggered via direct or indirect A GL62 inactivation by the FIS polycomb complex.
Abstract: Endosperm, a storage tissue in the angiosperm seed, provides nutrients to the embryo during seed development and/or to the developing seedling during germination. A major event in endosperm development is the transition between the syncytial phase, during which the endosperm nuclei undergo many rounds of mitosis without cytokinesis, and the cellularized phase, during which cell walls form around the endosperm nuclei. The molecular processes controlling this phase transition are not understood. In agl62 seeds, the endosperm cellularizes prematurely, indicating that AGL62 is required for suppression of cellularization during the syncytial phase. AGL62 encodes a Type I MADS domain protein that likely functions as a transcription factor. During seed development, AGL62 is expressed exclusively in the endosperm. During wild-type endosperm development, AGL62 expression is strong during the syncytial phase and then declines abruptly just before cellularization. By contrast, in mutant seeds containing defects in some FERTILIZATION-INDEPENDENT SEED (FIS) class Polycomb group genes, the endosperm fails to cellularize and AGL62 expression fails to decline. Together, these data suggest that AGL62 suppresses cellularization during the syncytial phase of endosperm development and that endosperm cellularization is triggered via direct or indirect AGL62 inactivation by the FIS polycomb complex.

254 citations


Journal ArticleDOI
TL;DR: It is suggested thatPho1 plays a crucial role in starch biosynthesis in rice endosperm at low temperatures and that one or more other factors can complement the function of Pho1 at high temperatures.
Abstract: Plastidial phosphorylase (Pho1) accounts for ∼96% of the total phosphorylase activity in developing rice (Oryza sativa) seeds. From mutant stocks induced by N-methyl-N-nitrosourea treatment, we identified plants with mutations in the Pho1 gene that are deficient in Pho1. Strikingly, the size of mature seeds and the starch content in these mutants showed considerable variation, ranging from shrunken to pseudonormal. The loss of Pho1 caused smaller starch granules to accumulate and modified the amylopectin structure. Variation in the morphological and biochemical phenotype of individual seeds was common to all 15 pho1-independent homozygous mutant lines studied, indicating that this phenotype was caused solely by the genetic defect. The phenotype of the pho1 mutation was temperature dependent. While the mutant plants grown at 30°C produced mainly plump seeds at maturity, most of the seeds from plants grown at 20°C were shrunken, with a significant proportion showing severe reduction in starch accumulation. These results strongly suggest that Pho1 plays a crucial role in starch biosynthesis in rice endosperm at low temperatures and that one or more other factors can complement the function of Pho1 at high temperatures.

251 citations


Journal ArticleDOI
TL;DR: High molecular weight forms of SBEII demonstrated a higher affinity for in vitro glucan substrates than monomers, providing direct evidence for the existence of protein complexes involved in amylopectin biosynthesis.
Abstract: Protein-protein interactions among enzymes of amylopectin biosynthesis were investigated in developing wheat (Triticum aestivum) endosperm. Physical interactions between starch branching enzymes (SBEs) and starch synthases (SSs) were identified from endosperm amyloplasts during the active phase of starch deposition in the developing grain using immunoprecipitation and cross-linking strategies. Coimmunoprecipitation experiments using peptide-specific antibodies indicate that at least two distinct complexes exist containing SSI, SSIIa, and either of SBEIIa or SBEIIb. Chemical cross linking was used to identify protein complexes containing SBEs and SSs from amyloplast extracts. Separation of extracts by gel filtration chromatography demonstrated the presence of SBE and SS forms in protein complexes of around 260 kD and that SBEII forms may also exist as homodimers. Analysis of cross-linked 260-kD aggregation products from amyloplast lysates by mass spectrometry confirmed SSI, SSIIa, and SBEII forms as components of one or more protein complexes in amyloplasts. In vitro phosphorylation experiments with γ-32P-ATP indicated that SSII and both forms of SBEII are phosphorylated. Treatment of the partially purified 260-kD SS-SBE complexes with alkaline phosphatase caused dissociation of the assembly into the respective monomeric proteins, indicating that formation of SS-SBE complexes is phosphorylation dependent. The 260-kD SS-SBEII protein complexes are formed around 10 to 15 d after pollination and were shown to be catalytically active with respect to both SS and SBE activities. Prior to this developmental stage, SSI, SSII, and SBEII forms were detectable only in monomeric form. High molecular weight forms of SBEII demonstrated a higher affinity for in vitro glucan substrates than monomers. These results provide direct evidence for the existence of protein complexes involved in amylopectin biosynthesis.

248 citations


Journal ArticleDOI
TL;DR: Carotenoids are essential for photosynthesis and photoprotection; they also serve as precursors to signaling molecules that influence plant development and biotic/abiotic stress responses and are targets for metabolic breeding/engineering, particularly in the Poaceae family, which includes the major food crops.
Abstract: Carotenoids are essential for photosynthesis and photoprotection; they also serve as precursors to signaling molecules that influence plant development and biotic/abiotic stress responses. With potential to improve plant yield and nutritional quality, carotenoids are targets for metabolic breeding/engineering, particularly in the Poaceae (grass family), which includes the major food crops. Depending on genetic background, maize (Zea mays) endosperm carotenoid content varies, and therefore breeding-enhanced carotenoid levels have been of ongoing interest. The first committed step in the plastid-localized biosynthetic pathway is mediated by the nuclear-encoded phytoene synthase (PSY). The gene family in maize and other grasses contains three paralogs with specialized roles that are not well understood. Maize endosperm carotenoid accumulation requires PSY1 expression. A maize antibody was used to localize PSY1 to amyloplast envelope membranes and to determine PSY1 accumulation in relation to carotenoid accumulation in developing endosperm. To test when and if PSY transcript levels correlated with carotenoid content, advantage was taken of a maize germplasm diversity collection that exhibits genetic and chemical diversity. Total carotenoid content showed statistically significant correlation with endosperm transcript levels at 20 d after pollination for PSY1 but not PSY2 or PSY3. Timing of PSY1 transcript abundance, previously unknown, provides critical information for choosing breeding alleles or properly controlling introduced transgenes. PSY1 was unexpectedly found to have an additional role in photosynthetic tissue, where it was required for carotenogenesis in the dark and for heat stress tolerance. Leaf carotenogenesis was shown to require phytochrome-dependent and phytochrome-independent photoregulation of PSY2 plus nonphotoregulated PSY1 expression.

231 citations


Journal ArticleDOI
TL;DR: The observation that only two genes, HvCslF6 and Hv cslF9, are transcribed at high levels in developing grain is of potential relevance for the future manipulation of grain (1,3;1,4)-β-d-glucan levels.
Abstract: Cellulose synthase-like CslF genes have been implicated in the biosynthesis of (1,3;1,4)-β-d-glucans, which are major cell wall constituents in grasses and cereals. Seven CslF genes from barley (Hordeum vulgare) can be divided into two classes on the basis of intron-exon arrangements. Four of the HvCslF genes have been mapped to a single locus on barley chromosome 2H, in a region corresponding to a major quantitative trait locus for grain (1,3;1,4)-β-d-glucan content. The other HvCslF genes map to chromosomes 1H, 5H, and 7H, and in two cases the genes are close to other quantitative trait loci for grain (1,3;1,4)-β-d-glucan content. Spatial and temporal patterns of transcription of the seven genes have been defined through quantitative polymerase chain reaction. In developing barley coleoptiles HvCslF6 mRNA is most abundant. Transcript levels are maximal in 4- to 5-d coleoptiles, at a time when (1,3;1,4)-β-d-glucan content of coleoptile cell walls also reaches maximal levels. In the starchy endosperm of developing grain, HvCslF6 and HvCslF9 transcripts predominate. Two peaks of transcription are apparent. One occurs just after endosperm cellularization, 4 to 8 d after pollination, while the second occurs much later in grain development, more than 20 d after pollination. Marked varietal differences in transcription of the HvCslF genes are observed during endosperm development. Given the commercial importance of cereal (1,3;1,4)-β-d-glucans in human nutrition, in stock feed, and in malting and brewing, the observation that only two genes, HvCslF6 and HvCslF9, are transcribed at high levels in developing grain is of potential relevance for the future manipulation of grain (1,3;1,4)-β-d-glucan levels.

223 citations


Journal ArticleDOI
TL;DR: The data suggest that de novo synthesis of active GAs is necessary for stamen development in early flowers and that bioactive GAs made in the stamens and/or flower receptacles are transported to petals to promote their growth.
Abstract: Gibberellin 3-oxidase (GA3ox) catalyzes the final step in the synthesis of bioactive gibberellins (GAs). We examined the expression patterns of all four GA3ox genes in Arabidopsis thaliana by promoter–β-glucuronidase gene fusions and by quantitative RT-PCR and defined their physiological roles by characterizing single, double, and triple mutants. In developing flowers, GA3ox genes are only expressed in stamen filaments, anthers, and flower receptacles. Mutant plants that lack both GA3ox1 and GA3ox3 functions displayed stamen and petal defects, indicating that these two genes are important for GA production in the flower. Our data suggest that de novo synthesis of active GAs is necessary for stamen development in early flowers and that bioactive GAs made in the stamens and/or flower receptacles are transported to petals to promote their growth. In developing siliques, GA3ox1 is mainly expressed in the replums, funiculi, and the silique receptacles, whereas the other GA3ox genes are only expressed in developing seeds. Active GAs appear to be transported from the seed endosperm to the surrounding maternal tissues where they promote growth. The immediate upregulation of GA3ox1 and GA3ox4 after anthesis suggests that pollination and/or fertilization is a prerequisite for de novo GA biosynthesis in fruit, which in turn promotes initial elongation of the silique.

222 citations


Journal ArticleDOI
TL;DR: In this paper, a maize-produced antibody was used to treat or prevent HIV-1 infection in humans, although to be effective it would need to be produced on a very large scale.
Abstract: Antibody 2G12 is one of a small number of human immunoglobulin G (IgG) monoclonal antibodies exhibiting potent and broad human immunodeficiency virus-1 (HIV-1)-neutralizing activity in vitro, and the ability to prevent HIV-1 infection in animal models. It could be used to treat or prevent HIV-1 infection in humans, although to be effective it would need to be produced on a very large scale. We have therefore expressed this antibody in maize, which could facilitate inexpensive, large-scale production. The antibody was expressed in the endosperm, together with the fluorescent marker protein Discosoma red fluorescent protein (DsRed), which helps to identify antibody-expressing lines and trace transgenic offspring when bred into elite maize germplasm. To achieve accumulation in storage organelles derived from the endomembrane system, a KDEL signal was added to both antibody chains. Immunofluorescence and electron microscopy confirmed the accumulation of the antibody in zein bodies that bud from the endoplasmic reticulum. In agreement with this localization, N-glycans attached to the heavy chain were mostly devoid of Golgi-specific modifications, such as fucose and xylose. Surprisingly, most of the glycans were trimmed extensively, indicating that a significant endoglycanase activity was present in maize endosperm. The specific antigen-binding function of the purified antibody was verified by surface plasmon resonance analysis, and in vitro cell assays demonstrated that the HIV-neutralizing properties of the maize-produced antibody were equivalent to or better than those of its Chinese hamster ovary cell-derived counterpart.

158 citations


Journal ArticleDOI
TL;DR: Recent findings concerning the synthesis of this important molecule in the cereal endosperm are described and developing evidence that several of the starch biosynthetic enzymes involved in amylopectin synthesis occur in complexes may provide the specificity for the formation of nonrandom branch-points is reviewed.

158 citations


Journal ArticleDOI
07 Mar 2008-Cell
TL;DR: Gene imprinting, the differential expression of maternal and paternal alleles, independently evolved in mammals and in flowering plants to prevent parthenogenetic development of the endosperm.

154 citations


Journal ArticleDOI
TL;DR: The data generated provide a useful resource providing novel insight into early seed development and identify new target genes for further characterization, including predominance for cytokinin signaling during early endosperm development.
Abstract: During the early stages of seed development, Arabidopsis (Arabidopsis thaliana) endosperm is syncytial and proliferates rapidly through repeated rounds of mitosis without cytokinesis. This stage of endosperm development is important in determining final seed size and is a model for studying aspects of cellular and molecular biology, such as the cell cycle and genomic imprinting. However, the small size of the Arabidopsis seed makes high-throughput molecular analysis of the early endosperm technically difficult. Laser capture microdissection enabled high-resolution transcript analysis of the syncytial stage of Arabidopsis endosperm development at 4 d after pollination. Analysis of Gene Ontology representation revealed a developmental program dominated by the expression of genes associated with cell cycle, DNA processing, chromatin assembly, protein synthesis, cytoskeleton- and microtubule-related processes, and cell/organelle biogenesis and organization. Analysis of core cell cycle genes implicates particular gene family members as playing important roles in controlling syncytial cell division. Hormone marker analysis indicates predominance for cytokinin signaling during early endosperm development. Comparisons with publicly available microarray data revealed that approximately 800 putative early seed-specific genes were preferentially expressed in the endosperm. Early seed expression was confirmed for 71 genes using quantitative reverse transcription-polymerase chain reaction, with 27 transcription factors being confirmed as early seed specific. Promoter-reporter lines confirmed endosperm-preferred expression at 4 d after pollination for five transcription factors, which validates the approach and suggests important roles for these genes during early endosperm development. In summary, the data generated provide a useful resource providing novel insight into early seed development and identify new target genes for further characterization.

Journal ArticleDOI
TL;DR: In this article, the authors used light microscopy and gas chromatographic analysis of hand-dissected botanical and pearling fractions to localize the alkylresorcinols (AR) in wheat and rye kernels.

Journal ArticleDOI
TL;DR: Gel retardation assays and trans-activation experiments indicated that the truncated GCN4 and P box are specifically recognized by RISBZ1 b-ZIP and RPBF Dof activators in vitro, respectively, and are synergistically transactivated, indicating that combinatorial interactions of these motifs are involved in essential endosperm-specific regulation.
Abstract: A new glutelin gene, designated GluD-1, has been discovered by comparing the seed storage proteins from 48 japonica and indica rice cultivars on SDS-PAGE gels. Evidence that GluD-1 is a member of the glutelin family was provided by Western blots using anti-glutelin antiserum and by mapping the gene to the chromosomal glutelin gene cluster. The limited GluD-1 size polymorphism among the rice varieties is due to amino acid substitutions rather than to post-transcriptional modification. GluD-1 is maximally expressed in the starchy endosperm starting at 5 d after flowering (DAF) and increasing through 30 DAF, a major difference from the other glutelins which are primarily expressed in the subaleurone from 10-16 DAF. Only about 0.2 kb of the GluD-1 promoter was sufficient to confer inner starchy endosperm-specific expression. The 0.2 kb truncated GluD-1 promoter contains a bifactorial endosperm box consisting of a truncated GCN4 motif (TGA(G/C)TCA) and AAAG Prolamin box (P box), and ACGT and AACA motifs as cis-regulatory elements. Gel retardation assays and trans-activation experiments indicated that the truncated GCN4 and P box are specifically recognized by RISBZ1 b-ZIP and RPBF Dof activators in vitro, respectively, and are synergistically transactivated, indicating that combinatorial interactions of these motifs are involved in essential endosperm-specific regulation. Furthermore, deviation from the cognate GCN4 motif alters tissue-specific expression in the inner starchy endosperm to include other endosperm tissues.

Journal ArticleDOI
TL;DR: The effects of nitrogen (N) fertiliser on grain size and shape, starch and protein concentration, vitreosity, storage protein composition, and alcohol yield of two winter wheat varieties contrasting in endosperm texture were studied in a field trial in Herefordshire, UK in 2004 as mentioned in this paper.

Journal ArticleDOI
TL;DR: The effect of Cd toxicity on seed germination and the activities of hydrolyzing enzymes, like acid phosphatases, proteases and α-amylases in Sorghum bicolor (L.) Moench, are reported on.
Abstract: Seed germination, one of the most important phases in the life cycle of a plant, is highly responsive to existing environment. Hydrolyzing enzymes play a major role in the mobilization of food reserves by hydrolyzing carbohydrates, proteins and fats. This paper reports on the effect of Cd toxicity on seed germination and the activities of hydrolyzing enzymes, like acid phosphatases (ACPs), proteases and α-amylases in Sorghum bicolor (L.) Moench. The metal uptake by embryonic axes and seeds was quantified. We found that sorghum could tolerate up to 0.5 mM Cd. At concentrations above 3.0 mM, seed germination was adversely affected with a complete cessation of seedling growth. All investigated hydrolyzing enzymes exhibited a significant decrease in activity with increasing Cd concentrations. The isozyme profiles indicated the loss of one or two isozymes of ACP, induction of a new isozyme for total protease (at 3.0 mM Cd) and a decline in the intensity of α-amylase isozymes. SEM studies revealed that Cd affected a change in root hair density. SEM investigations also confirmed the assay results of the inhibition of starch mobilization from endosperm. This suggested an inhibition of the hydrolysis of reserve carbohydrates and translocation of hydrolyzed sugars, ultimately resulting in decreased germination and disruption of seedling growth. Because sorghum is an important dryland crop, its response to the presence of Cd in agro-ecosystems and Cd-induced phytotoxicity during seed germination and seedling growth needs critical investigation.

Journal ArticleDOI
TL;DR: The possibility that starch metabolic enzymes located in granules are regulated by post-translational modification and/or protein–protein interactions is suggested.
Abstract: In addition to the exclusively granule-bound starch synthase GBSSI, starch granules also bind significant proportions of other starch biosynthetic enzymes, particularly starch synthases (SS) SSI and SSIIa, and starch branching enzyme (BE) BEIIb. Whether this association is a functional aspect of starch biosynthesis, or results from non-specific entrapment during amylopectin crystallization, is not known. This study utilized genetic, immunological, and proteomic approaches to investigate comprehensively the proteome and phosphoproteome of Zea mays endosperm starch granules. SSIII, BEI, BEIIa, and starch phosphorylase were identified as internal granule-associated proteins in maize endosperm, along with the previously identified proteins GBSS, SSI, SSIIa, and BEIIb. Genetic analyses revealed three instances in which granule association of one protein is affected by the absence of another biosynthetic enzyme. First, eliminating SSIIa caused reduced granule association of SSI and BEIIb, without affecting GBSS abundance. Second, eliminating SSIII caused the appearance of two distinct electrophoretic mobility forms of BEIIb, whereas only a single migration form of BEIIb was observed in wild type or any other mutant granules examined. Third, eliminating BEIIb caused significant increases in the abundance of BEI, BEIIa, SSIII, and starch phosphorylase in the granule, without affecting SSI or SSIIa. Analysis of the granule phosphoproteome with a phosphorylation-specific dye indicated that GBSS, BEIIb, and starch phosphorylase are all phosphorylated as they occur in the granule. These results suggest the possibility that starch metabolic enzymes located in granules are regulated by post-translational modification and/or protein-protein interactions.

Journal ArticleDOI
TL;DR: In this article, three-dimensional fluorescence microscopy was applied to floury and vitreous endosperm flours to understand the influence of cooking on starch hydrolysis in flours.
Abstract: To understand the influence of the sorghum and maize endosperm protein matrix honeycomb structure on starch hydrolysis in flours, three-dimensional fluorescence microscopy was applied to floury and vitreous endosperm flours cooked under various conditions. Cooking caused the collapse and matting of the sorghum and maize vitreous endosperm matrices, with the effect being greater in sorghum. The effect of cooking was rather different in the floury endosperm in that the protein matrices expanded and broke up to some extent. These effects were a consequence of expansion of the starch granules through water uptake during gelatinization. Cooking in the presence of 2-mercaptoethanol caused an expansion of the vitreous endosperm matrix mesh due to breakage of disulfide bonds in the protein matrix. Mercaptoethanol also caused an increase in the proportion of β-sheet structure relative to α-helical structure of the endosperm proteins. Increased energy of cooking caused collapse of the sorghum matrix. Disul...

Journal ArticleDOI
TL;DR: A novel bHLH transcription factor, ZHOUPI (ZOU), is identified, which mediates specific signalling pathways that coordinate embryo invasion and breakdown of surrounding endosperm tissues.
Abstract: During Arabidopsis seed development, the growing embryo invades and consumes the surrounding endosperm tissue. The signalling pathways that coordinate the separation of the embryo from the endosperm and the concomitant breakdown of the endosperm are poorly understood. We have identified a novel bHLH transcription factor, ZHOUPI (ZOU), which mediates these processes. ZOU is expressed exclusively in the endosperm of developing seeds. It is activated in the central cell immediately after fertilization and is initially expressed uniformly in endosperm, subsequently resolving to the embryo surrounding region (ESR). However, zou mutant embryos have defects in cuticle formation and in epidermal cell adhesion, suggesting that ZOU functions non-autonomously to regulate embryonic development. In addition, the endosperm of zou mutant seeds fails to separate from the embryo, restricting embryo expansion and resulting in the production of shrivelled collapsed seeds. zou seeds retain more endosperm than do wild-type seeds at maturity, suggesting that ZOU also controls endosperm breakdown. We identify several target genes whose expression in the ESR is regulated by ZOU. These include ABNORMAL LEAF SHAPE1, which encodes a subtilisin-like protease previously shown to have a similar role to ZOU in regulating endosperm adhesion and embryonic epidermal development. However, expression of several other ESR-specific genes is independent of ZOU. Therefore, ZOU is not a general regulator of endosperm patterning, but rather controls specific signalling pathways that coordinate embryo invasion and breakdown of surrounding endosperm tissues.

Journal ArticleDOI
TL;DR: Data suggest that RGE1 expression in the endosperm at the heart stage of embryo development plays an important role in controlling embryo growth, and possible involvement of these genes in seed morphology is indicated.
Abstract: We have isolated two dominant mutants from screening approximately 50,000 RIKEN activation-tagging lines that have short inflorescence internodes. The activation T-DNAs were inserted near a putative basic helix-loop-helix (bHLH) gene and expression of this gene was increased in the mutant lines. Overexpression of this bHLH gene produced the original mutant phenotype, indicating it was responsible for the mutants. Specific expression was observed during seed development. The loss-of-function mutation of the RETARDED GROWTH OF EMBRYO1 (RGE1) gene caused small and shriveled seeds. The embryo of the loss-of-function mutant showed retarded growth after the heart stage although abnormal morphogenesis and pattern formation of the embryo and endosperm was not observed. We named this bHLH gene RGE1. RGE1 expression was determined in endosperm cells using the β-glucuronidase reporter gene and reverse transcription-polymerase chain reaction. Microarray and real-time reverse transcription-polymerase chain reaction analysis showed specific down-regulation of putative GDSL motif lipase genes in the rge1-1 mutant, indicating possible involvement of these genes in seed morphology. These data suggest that RGE1 expression in the endosperm at the heart stage of embryo development plays an important role in controlling embryo growth.

Journal ArticleDOI
TL;DR: These promoters are ideal candidates for achieving gene expression for multiple purposes in monocot endosperm but avoid promoter homology-based gene silencing.
Abstract: The shortage of strong endosperm-specific expression promoters for driving the expression of recombinant protein genes in cereal endosperm is a major limitation in obtaining the required level and pattern of expression. Six promoters of seed storage glutelin genes (GluA-1, GluA-2, GluA-3, GluB-3, GluB-5, and GluC) were isolated from rice (Oryza sativa L.) genomic DNA by PCR. Their spatial and temporal expression patterns and expression potential in stable transgenic rice plants were examined with β-glucuronidase (GUS) used as a reporter gene. All the promoters showed the expected spatial expression within the endosperm. The GluA-1, GluA-2, and GluA-3 promoters directed GUS expression mainly in the outer portion (peripheral region) of the endosperm. The GluB-5 and GluC promoters directed GUS expression in the whole endosperm, with the latter expressed almost evenly throughout the whole endosperm, a feature different from that of other rice glutelin gene promoters. The GluB-3 promoter directed GUS expression solely in aleurone and subaleurone layers. Promoter activities examined during seed maturation showed that the GluC promoter had much higher activity than the other promoters. These promoters are ideal candidates for achieving gene expression for multiple purposes in monocot endosperm but avoid promoter homology-based gene silencing. The GluC promoter did not contain the endosperm specificity-determining motifs GCN4, AACA, and the prolamin-box, which suggests the existence of additional regulatory mechanism in determining endosperm specificity.

Journal ArticleDOI
TL;DR: It is concluded that there is too little scope from a human nutrition perspective to enhance ZnMC in rice endosperm by simply increasing the Zn supply to rice plants because Zn allocation to theendosperm is limited, while observed genotypic differences indicate scope for improvement through breeding.
Abstract: Rice (Oryza sativa) is the worlds’ most important cereal and potentially an important source of zinc (Zn) for people who eat mainly rice. To improve Zn delivery by rice, plant Zn uptake and internal allocation need to be better understood. This study reports on within-plant allocation and potential Zn accumulation in the rice grain in four so-called aerobic rice cultivars (Handao297, K150, Handao502 and Baxiludao). Two controlled-condition experiments were carried out, one with a wide range of constant Zn concentrations in the medium and one with a range of plant growth rate-related supply rates. In both experiments, increased Zn supply induced increased plant Zn uptake rate throughout crop development, when expressed as daily Zn uptake (l gd ay 21 ) or as daily Zn uptake per gram of plant dry matter (l gg 21 ). Zinc mass concentration (ZnMC) in all plant organs increased with an increase in Zn supply but to various degrees. At higher uptake levels, the ZnMC in stems increased most, while the ZnMC in hulled grains (brown rice) increased least. The increase in leaf ZnMC was generally small, but at toxic levels in the medium, leaf ZnMC increased significantly. It appears that regulation of grain Zn loading differs from regulation of Zn loading to other organs. A milling test on seeds of Baxiludao and Handao502 showed that when ZnMC in brown rice increased from 13 to 45 mg kg 21 , ZnMC in polished rice grains (endosperm) also increased from 9t o 37 mg kg 21 but remained three to five times lower than that in the bran. Irrespective of the ZnMC in the brown rice, around 75% of total grain Zn was present in the endosperm. In both cultivars, there was a major difference in ZnMC between bran and endosperm (120 and 37 mg kg 21 , respectively), suggesting a barrier for Zn transport between the two tissues. There seems to be a second barrier between stem and rachis, as their ZnMCs also differed greatly (300 and 100 mg kg 21 , respectively) in both cultivars at higher plant ZnMC. It is concluded that there is too little scope from a human nutrition perspective to enhance ZnMC in rice endosperm by simply increasing the Zn supply to rice plants because Zn allocation to the endosperm is limited, while observed genotypic differences indicate scope for improvement through breeding.

Journal ArticleDOI
TL;DR: Data suggest that AGL61 functions as a transcription factor and controls the expression of downstream genes during central cell development in agl61 female gametophytes.
Abstract: The central cell of the female gametophyte plays a role in pollen tube guidance and in regulating the initiation of endosperm development. Following fertilization, the central cell gives rise to the seed's endosperm, which nourishes the developing embryo within the seed. The molecular mechanisms controlling specification and differentiation of the central cell are poorly understood. We identified AGL61 in a screen for transcription factor genes expressed in the female gametophyte. AGL61 encodes a Type I MADS domain protein, which likely functions as a transcription factor. Consistent with this, an AGL61-green fluorescent protein fusion protein is localized to the nucleus. In the context of the ovule and seed, AGL61 is expressed exclusively in the central cell and early endosperm. agl61 female gametophytes are affected in the central cell specifically. The morphological defects include an overall reduction in size of the central cell and a reduced or absent central cell vacuole. When fertilized with wild-type pollen, agl61 central cells fail to give rise to endosperm. In addition, synergid- and antipodal-expressed genes are ectopically expressed in agl61 central cells. The expression pattern and mutant phenotype of AGL61 are similar to those of AGL80, suggesting that AGL61 may function as a heterodimer with AGL80 within the central cell; consistent with this, AGL61 and AGL80 interact in yeast two-hybrid assays. Together, these data suggest that AGL61 functions as a transcription factor and controls the expression of downstream genes during central cell development.

Journal ArticleDOI
TL;DR: It is shown that probes generated from fixed and embedded tissue sections represent largely the transcriptome of nonchemically treated and nonamplified references, and up-regulation of amino acid permeases in ETC indicates important roles in active nutrient uptake from the apoplastic space into the endosperm.
Abstract: Nucellar projection (NP) and endosperm transfer cells (ETC) are essential tissues in growing barley (Hordeum vulgare) grains, responsible for nutrient transfer from maternal to filial tissues, endosperm/embryo nutrition, and grain development. A laser microdissection pressure catapulting-based transcriptome analysis was established to study NP and ETC separately using a barley 12K macroarray. A major challenge was to isolate high-quality mRNA from preembedded, fixed tissue while maintaining tissue integrity. We show that probes generated from fixed and embedded tissue sections represent largely the transcriptome (>70%) of nonchemically treated and nonamplified references. In NP, the top-down gradient of cellular differentiation is reflected by the expression of C3HC4-type ubiquitin ligases and different histone genes, cell wall biosynthesis and expansin/extensin genes, as well as genes involved in programmed cell death-related proteolysis coupled to nitrogen remobilization, indicating distinct areas simultaneously undergoing mitosis, cell elongation, and disintegration. Activated gene expression related to gibberellin synthesis and function suggests a regulatory role for gibberellins in establishment of the differentiation gradient. Up-regulation of plasmalemma-intrinsic protein and tonoplast-intrinsic protein genes indicates involvement in nutrient transfer and/or unloading. In ETC, AP2/EREBP-like transcription factors and ethylene functions are transcriptionally activated, a response possibly coupled to activated defense mechanisms. Transcriptional activation of nucleotide sugar metabolism may be attributed to ascorbate synthesis and/or cell wall biosynthesis. These processes are potentially controlled by trehalose-6-P synthase/phosphatase, as suggested by expression of their respective genes. Up-regulation of amino acid permeases in ETC indicates important roles in active nutrient uptake from the apoplastic space into the endosperm.

Journal ArticleDOI
TL;DR: Both phenotypes were co-segregated with the UGPase1 transgene in segregating T1 plants, which demonstrates that U GPase1 has functional roles in both male sterility and the development of a chalky endosperm.
Abstract: A rice genic male-sterility gene ms-h is recessive and has a pleiotropic effect on the chalky endosperm. After fine mapping, nucleotide sequencing analysis of the ms-h gene revealed a single nucleotide substitution at the 3'-splice junction of the 14th intron of the UDP-glucose pyrophosphorylase 1 (UGPase1; EC2.7.7.9) gene, which causes the expression of two mature transcripts with abnormal sizes caused by the aberrant splicing. An in vitro functional assay showed that both proteins encoded by the two abnormal transcripts have no UGPase activity. The suppression of UGPase by the introduction of a UGPase1-RNAi construct in wild-type plants nearly eliminated seed set because of the male defect, with developmental retardation similar to the ms-h mutant phenotype, whereas overexpression of UGPase1 in ms-h mutant plants restored male fertility and the transformants produced T(1) seeds that segregated into normal and chalky endosperms. In addition, both phenotypes were co-segregated with the UGPase1 transgene in segregating T(1) plants, which demonstrates that UGPase1 has functional roles in both male sterility and the development of a chalky endosperm. Our results suggest that UGPase1 plays a key role in pollen development as well as seed carbohydrate metabolism.

Journal ArticleDOI
TL;DR: It is demonstrated that at 8–10 days after pollination the endosperm and especially the basal transfer cell layer is a major site of ZmIPT2 expression, and that this expression persists in the BETL and the developing embryo into later kernel development stages, suggesting a major role in CK biosynthesis for kernel development.
Abstract: Cytokinins (CKs) are plant hormones that regulate a large number of processes associated with plant growth and development such as induction of stomata opening, delayed senescence, suppression of auxin-induced apical dominance, signaling of nitrogen availability, differentiation of plastids and control of sink strength. In maize, CKs are thought to play an important role in establishing seed size and increasing seed set under normal and unfavorable environmental conditions therefore influencing yield. In recent years, the discovery of isopentenyl transferase (IPT) genes in plants has shed light on the CK biosynthesis pathway in plants. In an effort to increase our understanding of the role played by CKs in maize development and sink-strength, we identified several putative IPT genes using a bioinformatics approach. We focused our attention on one gene in particular, ZmIPT2, because of its strong expression in developing kernels. The expression of the gene and its product overlays the change in CK levels in developing kernels suggesting a major role in CK biosynthesis for kernel development. We demonstrate that at 8–10 days after pollination (DAP) the endosperm and especially the basal transfer cell layer (BETL) is a major site of ZmIPT2 expression, and that this expression persists in the BETL and the developing embryo into later kernel development stages. We show that ectopic expression of ZmIPT2 in calli and in planta created phenotypes consistent with CK overproduction. We also show that ZmIPT2 preferentially uses ADP and ATP over AMP as the substrates for dimethylallyl diphosphate (DMAPP) IPT activity. The expression pattern of ZmIPT2 in the BETL, endosperm and embryo during kernel development will be discussed with an emphasis on the suggested role of CKs in determining sink-strength and grain production in crop plants.

Journal ArticleDOI
TL;DR: Co-localization of SUS protein and starch grains in the seed coat at 3 and 10 daf indicates that SUS may be involved in temporary starch deposition during the early stages of seed development, whilst in the later stages SUS metabolizes sucrose in the embryo and cotyledon.
Abstract: This study investigated the roles of sucrose synthase (SUS) in developing seeds and siliques of Arabidopsis thaliana. Enzyme activity assays showed that SUS activity was highest in developing whole siliques and young rosette leaves compared with other tissues including mature leaves, stems, and flowers. Surprisingly, quantitative PCR analyses revealed little correlation between SUS activity and transcript expression, which indicated the importance of examining the role of SUS at the protein level. Therefore, immunolocalization was performed over a developmental time course to determine the previously unreported cellular localization of SUS in Arabidopsis seed and silique tissues. At 3 d and 10 d after flowering (daf), SUS protein localized to the silique wall, seed coat, funiculus, and endosperm. By 13 daf, SUS protein was detected in the embryo and aleurone layer, but was absent from the seed coat and funiculus. Starch grains were also present in the seed coat at 3 and 10 daf, but were absent at 13 daf. Co-localization of SUS protein and starch grains in the seed coat at 3 and 10 daf indicates that SUS may be involved in temporary starch deposition during the early stages of seed development, whilst in the later stages SUS metabolizes sucrose in the embryo and cotyledon. Within the silique wall, SUS localized specifically to the companion cells, indicating that SUS activity may be required to provide energy for phloem transport activities in the silique wall. The results highlight the diverse roles that SUS may play during the development of silique and seed in Arabidopsis.

Journal ArticleDOI
TL;DR: In this paper, the fate of sucrose (Suc) supplied via the phloem to developing oilseed rape (Brassica napus) seeds has been investigated by supplying [14C]Suc to pedicels of detached, developing siliques.
Abstract: The fate of sucrose (Suc) supplied via the phloem to developing oilseed rape (Brassica napus) seeds has been investigated by supplying [14C]Suc to pedicels of detached, developing siliques. The method gives high, sustained rates of lipid synthesis in developing embryos within the silique comparable with those on the intact plant. At very early developmental stages (3 d after anthesis), the liquid fraction that occupies most of the interior of the seed has a very high hexose-to-Suc ratio and [14C]Suc entering the seeds is rapidly converted to hexoses. Between 3 and 12 d after anthesis, the hexose-to-Suc ratio of the liquid fraction of the seed remains high, but the fraction of [14C]Suc converted to hexose falls dramatically. Instead, most of the [14C]Suc entering the seed is rapidly converted to products in the growing embryo. These data, together with light and nuclear magnetic resonance microscopy, reveal complex compartmentation of sugar metabolism and transport within the seed during development. The bulk of the sugar in the liquid fraction of the seed is probably contained within the central vacuole of the endosperm. This sugar is not in contact with the embryo and is not on the path taken by carbon from the phloem to the embryo. These findings have important implications for the sugar switch model of embryo development and for understanding the relationship between the embryo and the surrounding endosperm.

Journal ArticleDOI
TL;DR: The pathways outlined in this paper suggest that amyloplasts play a central role in endosperm metabolism and the interacting effects of genetics and environment on starch and protein production may be mediated in part by regulatory mechanisms within this organelle.
Abstract: By definition, amyloplasts are plastids specialized for starch production. However, a proteomic study of amyloplasts isolated from wheat (Triticum aestivum Butte 86) endosperm at 10 days after anthesis (DPA) detected enzymes from many other metabolic and biosynthetic pathways. To better understand the role of amyloplasts in food production, the data from that study were evaluated in detail and an amyloplast metabolic map was outlined. Analysis of 288 proteins detected in an amyloplast preparation predicted that 178 were amyloplast proteins. Criteria included homology with known plastid proteins, prediction of a plastid transit peptide for the wheat gene product or a close homolog, known plastid location of the pathway, and predicted plastid location for other members of the same pathway. Of these, 135 enzymes were arranged into 18 pathways for carbohydrate, lipid, amino acid, nucleic acid and other biosynthetic processes that are critical for grain-fill. Functions of the other proteins are also discussed. The pathways outlined in this paper suggest that amyloplasts play a central role in endosperm metabolism. The interacting effects of genetics and environment on starch and protein production may be mediated in part by regulatory mechanisms within this organelle.

Journal ArticleDOI
TL;DR: An optimized genotyping method using endosperm DNA sampled from single maize seeds was developed, which can be used to replace leaf DNA-based genotypes for both genetic studies and breeding applications and provides an opportunity for dramatic improvements in the efficiency and selective gain of breeding systems.
Abstract: Leaf collection from the field, labeling and tracking back to the source plants after genotyp- ing are rate limiting steps in leaf DNA-based genotyping. In this study, an optimized genotyping method using endosperm DNA sampled from single maize seeds was developed, which can be used to replace leaf DNA-based genotyping for both genetic studies and breeding applications. A similar approach is likely to be suitable for all plants with relatively large seeds. Part of the endosperm was excised from imbibed maize seeds and DNA extracted in 96-tube plates using individuals from eight F2 populations and seven inbreds. The quality of the resultant DNA was functionally comparable to DNA extracted from leaf tissue. Extraction from 30 mg of endosperm yields 3-10 lg DNA, which is sufficient for analysis of 200-400 agarose-gel PCR-based markers, with the potential for several million chip-based SNP marker analyses. By comparing endosperm DNA and leaf DNA for individuals from an F2 population, geno- typing errors caused by pericarp contamination and hetero-fertilization were found to average 3.8 and 0.6%, respectively. Endosperm sampling did not affect germination rates under controlled conditions, although under normal field conditions the germina- tion rate, seedling establishment, and growth vigor were significantly lower than that of non-sampled controls for some genotypes. However, careful field management can compensate for these effects. Seed DNA-based genotyping lowered costs by 24.6% compared to leaf DNA-based genotyping due to reduced field plantings and labor costs. A substantial advantage of this approach is that it can be used to select desirable genotypes before planting. As such it provides an opportunity for dramatic improvements in the efficiency and selective gain of breeding systems based on optimum combinations of marker- assisted selection and phenotypic selection within and between generations.

Journal ArticleDOI
TL;DR: The results revealed that chromosome elimination after fertilization caused the haploid production in maize.
Abstract: In vivo haploid production induced by inducer lines derived from Stock 6 is widely used in breeding program of maize (Zea mays L.), but the mechanisms behind have not yet been fully understood. In this study, average frequency of haploid induction in four inbred lines by Stock 6-derived inducer line HZI1 was above 10%. About 0.2% kernels from the cross Hua24 x HZI1 had mosaic endosperm showing yellow shrunken parts from Hua24 to normal parts with purple aleurone from HZI1. Individual lagged chromosomes and micronuclei were observed in mitotic cells of ovules pollinated by HZI1. Above 56.4% of the radicles from the kernels with purple aleurone and colorless embryos were mixoploid (2n = 9-21), and more than 45.22% cells were haploid cells (2n = 10) in three crosses. More than 62.5% of the radicles from the kernels with purple aleurone and purple embryos were mixoploid (2n = 9-21) having 54.27% cells with 2n = 20. SSR analysis showed that all haploids from the cross Hua24 x HZI1 shared the same genomic compositions as Hua24 except for plants Nos. 862 and 857 with some polymorphic DNA bands. The results revealed that chromosome elimination after fertilization caused the haploid production in maize.