scispace - formally typeset
Search or ask a question

Showing papers on "Endosperm published in 2018"


Journal ArticleDOI
TL;DR: Jointly, SWEET11 and 15 show all the hallmarks of being necessary for seed filling with sucrose efflux functions at thenucellar projection and a role in transfer across the nucellar epidermis/aleurone interface, delineating two major steps for apoplasmic seed filling.
Abstract: Despite the relevance of seed-filling mechanisms for crop yield, we still have only a rudimentary understanding of the transport processes that supply the caryopsis with sugars. We hypothesized that SWEET sucrose transporters may play important roles in nutrient import pathways in the rice caryopsis. We used a combination of mRNA quantification, histochemical analyses, translational promoter-reporter fusions and analysis of knockout mutants created by genomic editing to evaluate the contribution of SWEET transporters to seed filling. In rice caryopses, SWEET11 and 15 had the highest mRNA levels and proteins localized to four key sites: all regions of the nucellus at early stages; the nucellar projection close to the dorsal vein; the nucellar epidermis that surrounds the endosperm; and the aleurone. ossweet11;15 double knockout lines accumulated starch in the pericarp, whereas caryopses did not contain a functional endosperm. Jointly, SWEET11 and 15 show all the hallmarks of being necessary for seed filling with sucrose efflux functions at the nucellar projection and a role in transfer across the nucellar epidermis/aleurone interface, delineating two major steps for apoplasmic seed filling, observations that are discussed in relation to observations made in rice and barley regarding the relative prevalence of these two potential import routes.

170 citations


Journal ArticleDOI
TL;DR: It is shown that auxin response increases in ovules after fertilization, due to upregulated auxin biosynthesis in the integuments, and this maternally produced auxin is required for correct embryo development.
Abstract: The angiosperm seed is composed of three genetically distinct tissues: the diploid embryo that originates from the fertilized egg cell, the triploid endosperm that is produced from the fertilized central cell, and the maternal sporophytic integuments that develop into the seed coat(1). At the onset of embryo development in Arabidopsis thaliana, the zygote divides asymmetrically, producing a small apical embryonic cell and a larger basal cell that connects the embryo to the maternal tissue(2). The coordinated and synchronous development of the embryo and the surrounding integuments, and the alignment of their growth axes, suggest communication between maternal tissues and the embryo. In contrast to animals, however, where a network of maternal factors that direct embryo patterning have been identified(3,4), only a few maternal mutations have been described to affect embryo development in plants(5-7). Early embryo patterning in Arabidopsis requires accumulation of the phytohormone auxin in the apical cell by directed transport from the suspensors(8-10). However, the origin of this auxin has remained obscure. Here we investigate the source of auxin for early embryogenesis and provide evidence that the mother plant coordinates seed development by supplying auxin to the early embryo from the integuments of the ovule. We show that auxin response increases in ovules after fertilization, due to upregulated auxin biosynthesis in the integuments, and this maternally produced auxin is required for correct embryo development.

122 citations


Journal ArticleDOI
TL;DR: It is proved that introduction of a minimal set of four transgenes enables de novo biosynthesis of astaxanthin in the rice endosperm and provides a successful example for synthetic biology in plants and biofortification in crops.

106 citations


Journal ArticleDOI
TL;DR: A regulatory network centered by O11 coordinates cell development, storage nutrient metabolism, and stress response during endosperm development and nutrient metabolism is revealed.
Abstract: Maize (Zea mays) endosperm is a primary tissue for nutrient storage and is highly differentiated during development. However, the regulatory networks of endosperm development and nutrient metabolism remain largely unknown. Maize opaque11 (o11) is a classic seed mutant with a small and opaque endosperm showing decreased starch and protein accumulation. We cloned O11 and found that it encodes an endosperm-specific bHLH transcription factor (TF). Loss of function of O11 significantly affected transcription of carbohydrate/amino acid metabolism and stress response genes. Genome-wide binding site analysis revealed 9885 O11 binding sites distributed over 6033 genes. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 259 O11-modulated target genes. O11 was found to directly regulate key TFs in endosperm development (NKD2 and ZmDOF3) and nutrient metabolism (O2 and PBF). Moreover, O11 directly regulates cyPPDKs and multiple carbohydrate metabolic enzymes. O11 is an activator of ZmYoda, suggesting its regulatory function through the MAPK pathway in endosperm development. Many stress-response genes are also direct targets of O11. In addition, 11 O11-interacting proteins were identified, including ZmIce1, which coregulates stress response targets and ZmYoda with O11. Therefore, this study reveals an endosperm regulatory network centered around O11, which coordinates endosperm development, metabolism and stress responses.

84 citations


Journal ArticleDOI
TL;DR: The newly developed quality protein maize (QPM) inbreds showed modified kernels (25–50% opaqueness) coupled with high degree of phenotypic resemblance to the respective recipient lines, including grain yield, which holds significant promise for improving nutritional security.
Abstract: Maize is a valuable source of food and feed worldwide. Maize endosperm protein is, however nutritionally poor due to the reduced levels of two essential amino acids, lysine and tryptophan. In this study, recessive opaque2 (o2) allele that confers enhanced endosperm lysine and tryptophan, was introgressed using marker-assisted backcross breeding into three normal inbred lines (HKI323, HKI1105 and HKI1128). These are the parental lines of three popular medium-maturing single cross hybrids (HM4, HM8 and HM9) in India. Gene-based simple sequence repeat (SSR) markers (umc1066 and phi057) were successfully deployed for introgression of o2 allele. Background selection using genome-based SSRs helped in recovering > 96% of recurrent parent genome. The newly developed quality protein maize (QPM) inbreds showed modified kernels (25-50% opaqueness) coupled with high degree of phenotypic resemblance to the respective recipient lines, including grain yield. In addition, endosperm protein quality showed increased lysine and tryptophan in the inbreds to the range of 52-95% and 47-118%, respectively. The reconstituted QPM hybrids recorded significant enhancement of endosperm lysine (48-74%) and tryptophan (55-100%) in the endosperm. The QPM hybrids exhibited high phenotypic similarity with the original hybrids for morphological and yield contributing traits along with responses to some major diseases like turcicum leaf blight and maydis leaf blight. The grain yield of QPM hybrids was at par with their original versions under multilocation testing. These elite, high-yielding QPM hybrids with improved protein quality have been released and notified for commercial cultivation, and hold significant promise for improving nutritional security.

83 citations


Journal ArticleDOI
TL;DR: It is suggested that OsROS1-mediated DNA demethylation restricts the number of aleurone cell layers in rice and provides a way to improve the nutrition of rice.
Abstract: The rice endosperm, consisting of an outer single-cell layer aleurone and an inner starchy endosperm, is an important staple food for humans. While starchy endosperm stores mainly starch, the aleurone is rich in an array of proteins, vitamins, and minerals. To improve the nutritional value of rice, we screened for mutants with thickened aleurones using a half-seed assay and identified thick aleurone 2–1 (ta2-1), in which the aleurone has 4.8 ± 2.2 cell layers on average. Except for starch, the contents of all measured nutritional factors, including lipids, proteins, vitamins, minerals, and dietary fibers, were increased in ta2-1 grains. Map-based cloning showed that TA2 encodes the DNA demethylase OsROS1. A point mutation in the 14th intron of OsROS1 led to alternative splicing that generated an extra transcript, mOsROS1, with a 21-nt insertion from the intron. Genetic analyses showed that the ta2-1 phenotype is inherited with an unusual gametophytic maternal effect, which is caused not by imprinted gene expression but rather by the presence of the mOsROS1 transcript. Five additional ta2 alleles with the increased aleurone cell layer and different inheritance patterns were identified by TILLING. Genome-wide bisulfite sequencing revealed general increases in CG and CHG methylations in ta2-1 endosperms, along with hypermethylation and reduced expression in two putative aleurone differentiation-related transcription factors. This study thus suggests that OsROS1-mediated DNA demethylation restricts the number of aleurone cell layers in rice and provides a way to improve the nutrition of rice.

72 citations


Journal ArticleDOI
TL;DR: Lutein was the main carotenoid found in wheat and tritordeum while zeaxanthin dominated in barley while lutein esters prevailed and it was assessed that cereal genotype determines the proportion of free and esterified forms.

70 citations


Journal ArticleDOI
TL;DR: Genome-wide analysis of genes regulated by the maize transcription factor Opaque-2 uncovered its functions in regulation of cell differentiation and endosperm storage development and insights are provided into the complexity of the O2-regulated network.
Abstract: Development of the cereal endosperm involves cell differentiation processes that enable nutrient uptake from the maternal plant, accumulation of storage products, and their utilization during germination. However, little is known about the regulatory mechanisms that link cell differentiation processes with those controlling storage product synthesis and deposition, including the activation of zein genes by the maize (Zea mays) bZIP transcription factor Opaque-2 (O2). Here, we mapped in vivo binding sites of O2 in B73 endosperm and compared the results with genes differentially expressed in B73 and B73o2 We identified 186 putative direct O2 targets and 1677 indirect targets, encoding a broad set of gene functionalities. Examination of the temporal expression patterns of O2 targets revealed at least two distinct modes of O2-mediated gene activation. Two O2-activated genes, bZIP17 and NAKED ENDOSPERM2 (NKD2), encode transcription factors, which can in turn coactivate other O2 network genes with O2. NKD2 (with its paralog NKD1) was previously shown to be involved in regulation of aleurone development. Collectively, our results provide insights into the complexity of the O2-regulated network and its role in regulation of endosperm cell differentiation and function.

64 citations


Journal ArticleDOI
TL;DR: New insights are denote into the role of OsPK2 in plant seed development, especially in starch synthesis, compound granules formation and grain filling, which would be useful for genetic improvement of high yield and rice grain quality.
Abstract: Starch is the main form of energy storage in higher plants. Although several enzymes and regulators of starch biosynthesis have been defined, the complete molecular machinery remains largely unknown. Screening for irregularities in endosperm formation in rice represents valuable prospect for studying starch synthesis pathway. Here, we identified a novel rice white-core endosperm and defective grain filling mutant, ospk2, which displays significantly lower grain weight, decreased starch content and alteration of starch physicochemical properties when compared to wild-type grains. The normal starch compound granules were drastically reduced and more single granules filled the endosperm cells of ospk2. Meanwhile, the germination rate of ospk2 seeds after 1-year storage was observably reduced compared with wild-type. Map-based cloning of OsPK2 indicated that it encodes a pyruvate kinase (PK, ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40), which catalyses an irreversible step of glycolysis. OsPK2 has a constitutive expression in rice and its protein localizes in chloroplasts. Enzyme assay showed that the protein product from expressed OsPK2 and the crude protein extracted from tissues of wild-type exhibits strong PK activity; however, the mutant presented reduced protein activity. OsPK2 (PKpα1) and three other putative rice plastidic isozymes, PKpα2, PKpβ1 and PKpβ2, can interact to form heteromer. Moreover, the mutation leads to multiple metabolic disorders. Altogether, these results denote new insights into the role of OsPK2 in plant seed development, especially in starch synthesis, compound granules formation and grain filling, which would be useful for genetic improvement of high yield and rice grain quality.

63 citations


Journal ArticleDOI
TL;DR: In this article, intact cells were isolated from dry milled flour obtained using three grinding rolls coupled with a wet sieving technique using selected sieves having varying apertures to investigate the effect of intactness of cell walls on enzymic hydrolysis of entrapped starch.

63 citations


Journal ArticleDOI
TL;DR: A model for endosperm cell wall structural organisation is proposed, based on a core of cellulose and interacting non-cellulosic polysaccharides which anchors AX that in turn retains MLGs through physical entanglement.

Journal ArticleDOI
Zhehao Zhao1, Siran Yu1, Min Li1, Xin Gui1, Ping Li1 
TL;DR: There are extracellular microRNAs in coconut water, and their levels are higher in mature coconut water than in immature coconut water.
Abstract: In this study, the presence of microRNAs in coconut water was identified by real-time polymerase chain reaction (PCR) based on the results of high-throughput small RNA sequencing. In addition, the differences in microRNA content between immature and mature coconut water were compared. A total of 47 known microRNAs belonging to 25 families and 14 new microRNAs were identified in coconut endosperm. Through analysis using a target gene prediction software, potential microRNA target genes were identified in the human genome. Real-time PCR showed that the level of most microRNAs was higher in mature coconut water than in immature coconut water. Then, exosome-like nanoparticles were isolated from coconut water. After ultracentrifugation, some particle structures were seen in coconut water samples using 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate fluorescence staining. Subsequent scanning electron microscopy observation and dynamic light scattering analysis also revealed some exosome-like ...

Journal ArticleDOI
TL;DR: It is argued that this proof‐of‐principle study provides the basis of a strategy for biofortification of cereal endosperm with Zn.
Abstract: Zinc (Zn) is essential for all life forms, including humans. It is estimated that around two billion people are deficient in their Zn intake. Human dietary Zn intake relies heavily on plants, which in many developing countries consists mainly of cereals. The inner part of cereal grain, the endosperm, is the part that is eaten after milling but contains only a quarter of the total grain Zn. Here, we present results demonstrating that endosperm Zn content can be enhanced through expression of a transporter responsible for vacuolar Zn accumulation in cereals. The barley (Hordeum vulgare) vacuolar Zn transporter HvMTP1 was expressed under the control of the endosperm-specific D-hordein promoter. Transformed plants exhibited no significant change in growth but had higher total grain Zn concentration, as measured by ICP-OES, compared to parental controls. Compared with Zn, transformants had smaller increases in concentrations of Cu and Mn but not Fe. Staining grain cross sections with the Zn-specific stain DTZ revealed a significant enhancement of Zn accumulation in the endosperm of two of three transformed lines, a result confirmed by ICP-OES in the endosperm of dissected grain. Synchrotron X-ray fluorescence analysis of longitudinal grain sections demonstrated a redistribution of grain Zn from aleurone to endosperm. We argue that this proof-of-principle study provides the basis of a strategy for biofortification of cereal endosperm with Zn.

Journal ArticleDOI
TL;DR: A deficiency of bioactive GAs in rice seeds exposed to low temperature led to a decrement in starch hydrolysis and sugar consumption, thus inhibit seed germination.

Journal ArticleDOI
TL;DR: This is the first demonstration of niches for the most active groups of bacteria inhabiting different seed tissues of an angiosperm.
Abstract: Seeds are inhabited by diverse bacterial and fungal taxa whose colonization patterns are little understood. We hypothesized, however, that specific niches within seeds host microbes. In this study, the putative presence of bacteria, inhabiting the seed endosphere of an angiosperm, the melon Cucumis melo reticulatus group cv. ‘Dulce’, was examined by scanning electron microscopy (SEM) and confocal laser-scanning microscopy coupled with double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH). SEM images showed microbial-like structures in different tissues and FISH revealed endophytic bacteria colonizing the outer and inner seed parts, on perisperm/endosperm envelope, inside the cotyledons as parts of the embryo, and, to a lesser extent, inside embryonic hypocotyl-root axis tissues. Alphaproteobacteria were shown to inhabit the seed coat and the envelope surrounding the embryonic hypocotyl-root tissues, but could not be seen in the cotyledons, whereas Betaproteobacteria were only detected in the outer seed coat. Some Gammaproteobacteria were also seen in the outer seed coat, but were mainly visualized in the cotyledons with a few inside the seed’s embryonic hypocotyl-root tissues, among other bacteria. Firmicutes were visualized inside the seed coat, but mostly inside the cotyledon tissues, on the perisperm/endosperm envelope and inside the embryonic hypocotyl-root axis tissues. Microscopy revealed Actinobacteria inside the inner and outer seed coat and inside the embryonic parts such as cotyledons, with a few inside the hypocotyl-root axis. This is the first demonstration of niches for the most active groups of bacteria inhabiting different seed tissues of an angiosperm.

Journal ArticleDOI
TL;DR: In this paper, the microstructure and composition of the pericarp and endosperm, and the effects of nixtamalization on the structures and compositions of these tissues are discussed.

Journal ArticleDOI
TL;DR: The SSIIa-deficient mutant rice line EM204 (ss2a) is identified from a screen of 1,500 plants of the rice cultivar Kinmaze that were subjected to N-methyl-N-nitrosourea mutagenesis and indicates that EM204 starch will be suitable for making foods and food additives that easily gelatinize and slowly retrograde.
Abstract: The gelatinization temperature of endosperm starch in most japonica rice cultivars is significantly lower than that in most indica rice cultivars. This is because three single nucleotide polymorphisms in the Starch synthase (SS) IIa gene in japonica rice cultivars (SSIIaJ ) significantly reduce SSIIa activity, resulting in an increase in amylopectin short chains with degree of polymerization (DP) ≤ 12 compared to indica rice cultivars (SSIIaI ). SSIIa forms a trimeric complex with SSI and starch branching enzyme (BE) IIb in maize and japonica rice, which is likely important for the biosynthesis of short and intermediate amylopectin chains (DP ≤ 24) within the amylopectin cluster. It was unknown whether the complete absence of SSIIa further increases amylopectin short chains and reduces gelatinization temperature and/or forms altered protein complexes due to the lack of a suitable mutant. Here, we identify the SSIIa-deficient mutant rice line EM204 (ss2a) from a screen of ca. 1,500 plants of the rice cultivar Kinmaze (japonica) that were subjected to N-methyl-N-nitrosourea mutagenesis. The SSIIa gene in EM204 was mutated at the boundary between intron 5 and exon 6, which generated a guanine to adenine mutation and resulted in deletion of exon 6 in the mRNA transcript. SSIIa activity and SSIIa protein in developing endosperm of EM204 were not detected by native-PAGE/SS activity staining and native-PAGE/immunoblotting, respectively. SSIIa protein was completely absent in mature seeds. Gel filtration chromatography of soluble protein extracted from developing seeds showed that the SSI elution pattern in EM204 was altered and more SSI was eluted around 300 kDa, which corresponds with the molecular weight of trimeric complexes in wild type. The apparent amylose content of EM204 rice grains was higher than that in its parent Kinmaze. EM204 also had higher content of amylopectin short chains (DP ≤ 12) than Kinmaze, which reduced the gelatinization temperature of EM204 starch by 5.6°C compared to Kinmaze. These results indicate that EM204 starch will be suitable for making foods and food additives that easily gelatinize and slowly retrograde.

Journal ArticleDOI
01 Mar 2018-Genetics
TL;DR: A new maize seed mutant, defective kernel 37 (dek37), is identified and characterized, which has significantly delayed endosperm and embryo development and is involved in cis-splicing of mitochondrial nad2 intron 1 and is required for complex I assembly, mitochondrial function, and seed development in maize.
Abstract: Mitochondrial group II introns require the participation of numerous nucleus-encoded general and specific factors to achieve efficient splicing in vivo. Pentatricopeptide repeat (PPR) proteins have been implicated in assisting group II intron splicing. Here, we identified and characterized a new maize seed mutant, defective kernel 37 (dek37), which has significantly delayed endosperm and embryo development. Dek37 encodes a classic P-type PPR protein that targets mitochondria. The dek37 mutation causes no detectable DEK37 protein in mutant seeds. Mitochondrial transcripts analysis indicated that dek37 mutation decreases splicing efficiency of mitochondrial nad2 intron 1, leading to reduced assembly and NADH dehydrogenase activity of complex I. Transmission Electron Microscopy (TEM) revealed severe morphological defects of mitochondria in dek37. Transcriptome analysis of dek37 endosperm indicated enhanced expression in the alternative respiratory pathway and extensive differentially expressed genes related to mitochondrial function. These results indicated that Dek37 is involved in cis-splicing of mitochondrial nad2 intron 1 and is required for complex I assembly, mitochondrial function, and seed development in maize.

Journal ArticleDOI
TL;DR: An analysis of sugar and nonstarch polysaccharide content in the endosperm suggested an impact of the mutations on the carbon allocation process, suggesting the existence of cross‐talk between the starch and carbohydrate synthesis pathways.
Abstract: Modifications to the composition of starch, the major component of wheat flour, can have a profound effect on the nutritional and technological characteristics of the flour's end products. The starch synthesized in the grain of conventional wheats (Triticum aestivum) is a 3:1 mixture of the two polysaccharides amylopectin and amylose. Altering the activity of certain key starch synthesis enzymes (GBSSI, SSIIa and SBEIIa) has succeeded in generating starches containing a different polysaccharide ratio. Here, mutagenesis, followed by a conventional marker-assisted breeding exercise, has been used to generate three mutant lines that produce starch with an amylose contents of 0%, 46% and 79%. The direct and pleiotropic effects of the multiple mutation lines were identified at both the biochemical and molecular levels. Both the structure and composition of the starch were materially altered, changes which affected the functionality of the starch. An analysis of sugar and nonstarch polysaccharide content in the endosperm suggested an impact of the mutations on the carbon allocation process, suggesting the existence of cross-talk between the starch and carbohydrate synthesis pathways.

Journal ArticleDOI
Guangning Xie1, Zhaoxia Li1, Qijun Ran1, Hui Wang1, Juren Zhang1 
TL;DR: It is suggested that the over‐expression of the mutated ZmDA1 or ZmDAR1 genes improves the sugar imports into the sink organ and starch synthesis in maize kernels, resulting in a more developed basal endosperm transfer cell layer than WT and enhanced expression of starch synthase genes.
Abstract: Summary Grain weight and grain number are important crop yield determinants. DA1 and DAR1 are the ubiquitin receptors that function as the negative regulators of cell proliferation during development in Arabidopsis. An arginine to lysine mutant at amino acid site 358 could lead to the da1-1 phenotype, which results in an increased organ size and larger seeds. In this study, the mutated ZmDA1 (Zmda1) and mutated ZmDAR1 (Zmdar1) driven by the maize ubiquitin promoter was separately introduced into maize elite inbred line DH4866. The grain yield of the transgenic plants was 15% greater than that of the wild type in three years of field trials due to improvements in the grain number, weight and starch content. Interestingly, the over-expression of Zmda1 and Zmdar1 promoted kernel development, resulting in a more developed basal endosperm transfer cell layer (BETL) than WT and enhanced expression of starch synthase genes. This study suggests that the over-expression of the mutated ZmDA1 or ZmDAR1 genes improves the sugar imports into the sink organ and starch synthesis in maize kernels. This article is protected by copyright. All rights reserved.

Journal ArticleDOI
TL;DR: It is highlighted that spatiotemporal modulation of ABA and GA metabolism and signalling in wheat seeds underlies germination response to temperature.
Abstract: Seed germination is a complex process regulated by intrinsic hormonal cues such as abscisic acid (ABA) and gibberellin (GA), and environmental signals including temperature. Using pharmacological, molecular and metabolomics approaches, we show that supraoptimal temperature delays wheat seed germination through maintaining elevated embryonic ABA level via increased expression of ABA biosynthetic genes (TaNCED1 and TaNCED2), increasing embryo ABA sensitivity through upregulation of genes regulating ABA signalling positively (TaPYL5, TaSnRK2, ABI3 and ABI5) and decreasing embryo GA sensitivity via induction of TaRHT1 that regulates GA signalling negatively. Endospermic ABA and GA appeared to have minimal roles in regulating germination at supraoptimal temperature. Germination inhibition by suboptimal temperature is associated with elevated ABA level in the embryo and endosperm tissues, mediated by induction of TaNCEDs and decreased expression of endospermic ABA catabolic genes (TaCYP707As), and increased ABA sensitivity in both tissues via upregulation of TaPYL5, TaSnRK2, ABI3 and ABI5 in the embryo and TaSnRK2 and ABI5 in the endosperm. Furthermore, suboptimal temperature suppresses GA synthesis in both tissues and GA sensitivity in the embryo via repressing GA biosynthetic genes (TaGA20ox and TaGA3ox2) and inducing TaRHT1, respectively. These results highlight that spatiotemporal modulation of ABA and GA metabolism and signalling in wheat seeds underlies germination response to temperature.

Journal ArticleDOI
Juan Wang1, Pan Hu1, Lingshang Lin1, Zichun Chen1, Qiaoquan Liu1, Cunxu Wei1 
TL;DR: It was suggested that the decreased amylopectin in starch might remove steric hindrance and provide extra space for abundant amylose accumulation when the GBSSI amount was not elevated, and this investigation investigated the relationship between SBE dosage and the morphological architecture of heterogeneous starches in TRS endosperm from the view of the molecular structure of starch.
Abstract: Rice (Oryza sativa) endosperm is mainly occupied by homogeneous polygonal starch from inside to outside. However, morphologically different (heterogeneous) starches have been identified in some rice mutants. How these heterogeneous starches form remains unknown. A high-amylose rice line (TRS) generated through the antisense inhibition of starch branching synthase I (SBEI) and SBEIIb contains four heterogeneous starches: polygonal, aggregate, elongated, and hollow starch; these starches are regionally distributed in the endosperm from inside to outside. Here, we investigated the relationship between SBE dosage and the morphological architecture of heterogeneous starches in TRS endosperm from the view of the molecular structure of starch. The results indicated that their molecular structures underwent regular changes, including gradually increasing true amylose content but decreasing amylopectin content and gradually increasing the ratio of amylopectin long chain but decreasing the ratio of amylopectin short chain. Granule-bound starch synthase I (GBSSI) amounts in the four heterogeneous starches were not significantly different from each other, but SBEI, SBEIIa, and SBEIIb showed a gradually decreasing trend. Further immunostaining analysis revealed that the gradually decreasing SBEs acting on the formation of the four heterogeneous granules were mainly due to the spatial distribution of the three SBEs in the endosperm. It was suggested that the decreased amylopectin in starch might remove steric hindrance and provide extra space for abundant amylose accumulation when the GBSSI amount was not elevated. Furthermore, extra amylose coupled with altered amylopectin structure possibly led to morphological changes in heterogeneous granules.

Journal ArticleDOI
TL;DR: Important evidence is presented supporting that endosperm sugar not only acts as an essential energy source for seed germination but also determines seed dormancy and germination by affecting ABA signaling.
Abstract: Pre-harvest sprouting (PHS) is an unfavorable trait in cereal crops that could seriously decrease grain yield and quality. Although some PHS-associated quantitative trait loci or genes in cereals have been reported, the molecular mechanism underlying PHS remains largely elusive. Here, we characterized a rice mutant, phs8, which exhibits PHS phenotype accompanied by sugary endosperm. Map-based cloning revealed that PHS8 encodes a starch debranching enzyme named isoamylase1. Mutation in PHS8 resulted in the phytoglycogen breakdown and sugar accumulation in the endosperm. Intriguingly, with increase of sugar contents, decreased expression of OsABI3 and OsABI5 as well as reduced sensitivity to abscisic acid (ABA) were found in the phs8 mutant. Using rice suspension cell system, we confirmed that exogenous sugar is sufficient to suppress the expression of both OsABI3 and OsABI5. Furthermore, overexpression of OsABI3 or OsABI5 could partially rescue the PHS phenotype of phs8. Therefore, our study presents important evidence supporting that endosperm sugar not only acts as an essential energy source for seed germination but also determines seed dormancy and germination by affecting ABA signaling.

Journal ArticleDOI
TL;DR: The roles of DMA/NA levels in the transport of Fe and Zn within the embryo are thoroughly discussed and quantitative LA-ICP-MS metal map images of the embryo structures show that the first and second scenarios altered local distributions of Fe, and to a lesser extent of Zn.
Abstract: Iron and Zn deficiencies are worldwide nutritional disorders that can be alleviated by increasing the metal concentration of rice (Oryza sativa L.) grains via bio-fortification approaches. The overproduction of the metal chelator nicotianamine (NA) is among the most effective ones, but it is still unclear whether this is due to the enrichment in NA itself and/or the concomitant enrichment in the NA derivative 2'-deoxymugineic acid (DMA). The endosperm is the most commonly consumed portion of the rice grain and mediates the transfer of nutrients from vegetative tissues to the metal rich embryo. The impact of contrasting levels of DMA and NA on the metal distribution in the embryo and endosperm of rice seeds has been assessed using wild-type rice and six different transgenic lines overexpressing nicotianamine synthase (OsNAS1) and/or barley nicotianamine amino transferase (HvNAATb). These transgenic lines outlined three different DMA/NA scenarios: (i) in a first scenario, an enhanced NA level (via overexpression of OsNAS1) would not be fully depleted because of a limited capacity to use NA for DMA synthesis (lack of -or low- expression of HvNAATb), and results in consistent enrichments in NA, DMA, Fe and Zn in the endosperm and NA, DMA and Fe in the embryo; (ii) in a second scenario, an enhanced NA level (via overexpression of OsNAS1) would be depleted by an enhanced capacity to use NA for DMA synthesis (via expression of HvNAATb), and results in enrichments only for DMA and Fe, both in the endosperm and embryo, and (iii) in a third scenario, the lack of sufficient NA replenishment would limit DMA synthesis, in spite of the enhanced capacity to use NA for this purpose (via expression of HvNAATb), and results in decreases in NA, variable changes in DMA and moderate decreases in Fe in the embryo and endosperm. Also, quantitative LA-ICP-MS metal map images of the embryo structures show that the first and second scenarios altered local distributions of Fe, and to a lesser extent of Zn. The roles of DMA/NA levels in the transport of Fe and Zn within the embryo are thoroughly discussed.

Journal ArticleDOI
TL;DR: The data support a dual role for the FIS-PRC2 complex in the regulation of C2 type I MADS-box genes, as evidenced by a generalized role in the repression of gene expression at both alleles associated with endosperm cellularization and a specialized role in silencing the maternal allele of imprinted genes.
Abstract: Early endosperm development presents a unique system in which to uncover epigenetic regulatory mechanisms because the contributing maternal and paternal genomes possess differential epigenetic modifications. In Arabidopsis (Arabidopsis thaliana), the initiation of endosperm coenocytic growth upon fertilization and the transition to endosperm cellularization are regulated by the FERTILIZATION-INDEPENDENT SEED (FIS)-Polycomb Repressive Complex 2 (PRC2), a putative H3K27 methyltransferase. Here, we address the possible role of the FIS-PRC2 complex in regulating the type I MADS-box gene family, which has been shown previously to regulate early endosperm development. We show that a subclass of type I MADS-box genes (C2 genes) was expressed in distinct domains of the coenocytic endosperm in wild-type seeds. Furthermore, the C2 genes were mostly up-regulated biallelically during the extended coenocytic phase of endosperm development in the FIS-PRC2 mutant background. Using allele-specific expression analysis, we also identified a small subset of C2 genes subjected to FIS-PRC2-dependent maternal or FIS-PRC2-independent paternal imprinting. Our data support a dual role for the FIS-PRC2 complex in the regulation of C2 type I MADS-box genes, as evidenced by a generalized role in the repression of gene expression at both alleles associated with endosperm cellularization and a specialized role in silencing the maternal allele of imprinted genes.

Journal ArticleDOI
TL;DR: It is shown that rice Grain Width 2 (GW2), a RING-type E3 ubiquitin ligase, can control seed development by catalyzing the ubiquitination of expansin-like 1 (EXPLA1), a cell wall-loosening protein that increases cell growth.
Abstract: Seed size is one of the most important traits determining the yield of cereal crops. Many studies have been performed to uncover the mechanism of seed development. However, much remains to be understood, especially at the molecular level, although several genes involved in seed size have been identified. Here, we show that rice Grain Width 2 (GW2), a RING-type E3 ubiquitin ligase, can control seed development by catalyzing the ubiquitination of expansin-like 1 (EXPLA1), a cell wall-loosening protein that increases cell growth. Microscopic examination revealed that a GW2 mutant had a chalky endosperm due to the presence of loosely packed, spherical starch granules, although the grain shape was normal. Yeast two-hybrid and in vitro pull-down assays showed a strong interaction between GW2 and EXPLA1. In vitro ubiquitination analysis demonstrated that EXPLA1 was ubiquitinated by GW2 at lysine 279 (K279). GW2 and EXPLA1 colocalized to the nucleus when expressed simultaneously. These results suggest that GW2 negatively regulates seed size by targeting EXPLA1 for degradation through its E3 ubiquitin ligase activity.

Journal ArticleDOI
TL;DR: It is demonstrated that the engineering of a heat tolerant soluble starch synthase gene can be a potential strategy to improve wheat yield under heat stress conditions.
Abstract: Wheat (Triticum aestivum L.) is a temperate cereal with an optimum temperature range of 15-22°C during the grain filling stage. Heat stress is one of the major environmental constraints for wheat production worldwide. Temperatures above 25°C during the grain filling stage significantly reduced wheat yield and quality. This reduction was reported due to the inactivation of the soluble starch synthase, a key heat-labile enzyme in starch transformation of wheat endosperm. To improve wheat productivity under heat stress, the rice soluble starch synthase I, under the control of either a constitutive promoter or an endosperm-specific promoter, was expressed in wheat and the transgenic lines were monitored for expression and the effects on yield-related traits. The results showed that the transgenic wheat events expressed rice soluble starch synthase I at a high level after four generations, and transgenic plants produced grains of greater weight during heat stress. Under heat stress conditions, the thousand kernel weight increased 21-34% in T2 and T3 transgenic plants compared to the non-transgenic control plants. In addition, the photosynthetic duration of transgenic wheat was longer than in non-transgenic controls. This study demonstrated that the engineering of a heat tolerant soluble starch synthase gene can be a potential strategy to improve wheat yield under heat stress conditions.

Journal ArticleDOI
TL;DR: A model for the metabolic connection between Lys and serotonin metabolism is proposed in which elevated 2-aminoadipate from Lys catabolism may play a key role in the connection between the jasmonate signaling pathway, serotonin accumulation, and the brown phenotype in rice endosperm.
Abstract: Cereal endosperms produce a vast array of metabolites, including the essential amino acid lysine (Lys). Enhanced accumulation of Lys has been achieved via metabolic engineering in cereals, but the potential connection between metabolic engineering and Lys fortification is unclear. In mature seeds of engineered High Free Lysine (HFL) rice (Oryza sativa), the endosperm takes on a characteristic dark-brown appearance. In this study, we use an integrated metabolomic and transcriptomic approach combined with functional validation to elucidate the key metabolites responsible for the dark-brown phenotype. Importantly, we found that serotonin biosynthesis was elevated dramatically and closely linked with dark-brown endosperm color in HFL rice. A functional connection between serotonin and endosperm color was confirmed via overexpression of TDC3, a key enzyme of serotonin biosynthesis. Furthermore, we show that both the jasmonate signaling pathway and TDC expression were strongly induced in the late stage of endosperm development of HFL rice, coinciding with serotonin accumulation and dark-brown pigmentation. We propose a model for the metabolic connection between Lys and serotonin metabolism in which elevated 2-aminoadipate from Lys catabolism may play a key role in the connection between the jasmonate signaling pathway, serotonin accumulation, and the brown phenotype in rice endosperm. Our data provide a deeper understanding of amino acid metabolism in rice. In addition, the finding that both Lys and serotonin accumulate in HFL rice grains should promote efforts to create a nutritionally favorable crop.

Journal ArticleDOI
Jun Yang1, Miaomiao Fu1, Chen Ji1, Yongcai Huang1, Yongrui Wu1 
TL;DR: The cloning of a maize (Zea mays) opaque endosperm mutant that encodes oxalyl-CoA decarboxylase1 (EC4.1.2.8; OCD1) is reported, demonstrating that ZmOCD1 acts downstream of O7 in oxalate degradation and affectsendosperm development, the metabolome, and nutritional quality in maize seeds.
Abstract: The organic acid oxalate occurs in microbes, animals, and plants; however, excessive oxalate accumulation in vivo is toxic to cell growth and decreases the nutritional quality of certain vegetables. However, the enzymes and functions required for oxalate degradation in plants remain largely unknown. Here, we report the cloning of a maize (Zea mays) opaque endosperm mutant that encodes oxalyl-CoA decarboxylase1 (EC4.1.1.8; OCD1). Ocd1 is generally expressed and is specifically induced by oxalate. The ocd1 mutant seeds contain a significantly higher level of oxalate than the wild type, indicating that the ocd1 mutants have a defect in oxalate catabolism. The maize classic mutant opaque7 (o7) was initially cloned for its high lysine trait, although the gene function was not understood until its homolog in Arabidopsis thaliana was found to encode an oxalyl-CoA synthetase (EC 6.2.1.8), which ligates oxalate and CoA to form oxalyl-CoA. Our enzymatic analysis showed that ZmOCD1 catalyzes oxalyl-CoA, the product of O7, into formyl-CoA and CO2 for degradation. Mutations in ocd1 caused dramatic alterations in the metabolome in the endosperm. Our findings demonstrate that ZmOCD1 acts downstream of O7 in oxalate degradation and affects endosperm development, the metabolome, and nutritional quality in maize seeds.

Journal ArticleDOI
TL;DR: The data demonstrate the significant roles of RBP-P in glutelin and prolamine mRNA localization and in the regulation of genes important for plant growth and development through its RNA binding activity and cooperative regulation with interacting proteins.
Abstract: In developing rice (Oryza sativa) endosperm, mRNAs of the major storage proteins, glutelin and prolamine, are transported and anchored to distinct subdomains of the cortical endoplasmic reticulum RNA binding protein RBP-P binds to both glutelin and prolamine mRNAs, suggesting a role in some aspect of their RNA metabolism Here, we show that rice lines expressing mutant RBP-P mislocalize both glutelin and prolamine mRNAs Different mutant RBP-P proteins exhibited varying degrees of reduced RNA binding and/or protein-protein interaction properties, which may account for the mislocalization of storage protein RNAs In addition, partial loss of RBP-P function conferred a broad phenotypic variation ranging from dwarfism, chlorophyll deficiency, and sterility to late flowering and low spikelet fertility Transcriptome analysis highlighted the essential role of RBP-P in regulating storage protein genes and several essential biological processes during grain development Overall, our data demonstrate the significant roles of RBP-P in glutelin and prolamine mRNA localization and in the regulation of genes important for plant growth and development through its RNA binding activity and cooperative regulation with interacting proteins