scispace - formally typeset
Search or ask a question
Topic

Energy management

About: Energy management is a research topic. Over the lifetime, 24241 publications have been published within this topic receiving 410577 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A determinist energy management system for a microgrid, including advanced PV generators with embedded storage units and a gas microturbine is proposed, which is implemented in two parts: a central energy management of the microgrid and a local power management at the customer side.
Abstract: The development of energy management tools for next-generation PhotoVoltaic (PV) installations, including storage units, provides flexibility to distribution system operators. In this paper, the aggregation and implementation of these determinist energy management methods for business customers in a microgrid power system are presented. This paper proposes a determinist energy management system for a microgrid, including advanced PV generators with embedded storage units and a gas microturbine. The system is organized according to different functions and is implemented in two parts: a central energy management of the microgrid and a local power management at the customer side. The power planning is designed according to the prediction for PV power production and the load forecasting. The central and local management systems exchange data and order through a communication network. According to received grid power references, additional functions are also designed to manage locally the power flows between the various sources. Application to the case of a hybrid supercapacitor battery-based PV active generator is presented.

905 citations

Journal ArticleDOI
TL;DR: In this article, an optimal power management mechanism for grid connected photovoltaic (PV) systems with storage is presented, where the structure of a power supervisor based on an optimal predictive power scheduling algorithm is proposed.
Abstract: This paper presents an optimal power management mechanism for grid connected photovoltaic (PV) systems with storage. The objective is to help intensive penetration of PV production into the grid by proposing peak shaving service at the lowest cost. The structure of a power supervisor based on an optimal predictive power scheduling algorithm is proposed. Optimization is performed using Dynamic Programming and is compared with a simple ruled-based management. The particularity of this study remains first in the consideration of batteries ageing into the optimization process and second in the “day-ahead” approach of power management. Simulations and real conditions application are carried out over one exemplary day. In simulation, it points out that peak shaving is realized with the minimal cost, but especially that power fluctuations on the grid are reduced which matches with the initial objective of helping PV penetration into the grid. In real conditions, efficiency of the predictive schedule depends on accuracy of the forecasts, which leads to future works about optimal reactive power management.

902 citations

Journal ArticleDOI
06 Dec 2012-Sensors
TL;DR: This paper provides a comprehensive overview of NILM system and its associated methods and techniques used for disaggregated energy sensing, review the state-of-the art load signatures and disaggregation algorithms used for appliance recognition and highlight challenges and future research directions.
Abstract: Appliance Load Monitoring (ALM) is essential for energy management solutions, allowing them to obtain appliance-specific energy consumption statistics that can further be used to devise load scheduling strategies for optimal energy utilization. Fine-grained energy monitoring can be achieved by deploying smart power outlets on every device of interest; however it incurs extra hardware cost and installation complexity. Non-Intrusive Load Monitoring (NILM) is an attractive method for energy disaggregation, as it can discern devices from the aggregated data acquired from a single point of measurement. This paper provides a comprehensive overview of NILM system and its associated methods and techniques used for disaggregated energy sensing. We review the state-of-the art load signatures and disaggregation algorithms used for appliance recognition and highlight challenges and future research directions.

850 citations

Journal ArticleDOI
TL;DR: The need for grid-connected energy storage systems will grow worldwide in the next future due to the expansion of intermittent renewable energy sources and the inherent request for services of power quality and energy management as discussed by the authors.
Abstract: The need for grid-connected energy storage systems will grow worldwide in the next future due to the expansion of intermittent renewable energy sources and the inherent request for services of power quality and energy management. Electrochemical storage systems will be a solution of choice in many applications because of their localization flexibility, efficiency, scalability, and other appealing features. Among them redox flow batteries (RFBs) exhibit very high potential for several reasons, including power/energy independent sizing, high efficiency, room temperature operation, and extremely long charge/discharge cycle life. RFB technologies make use of different metal ion couples as reacting species. The best-researched and already commercially exploited types are all-vanadium redox batteries, but several research programs on other redox couples are underway in a number of countries. These programs aim at achieving major improvements resulting in more compact and cheaper systems, which can take the technology to a real breakthrough in stationary grid-connected applications.

847 citations

Journal ArticleDOI
TL;DR: This paper presents a multi-agent control system (MACS) that successfully manage the user's preferences for thermal and illuminance comfort, indoor air quality and energy conservation and is simulated using TRNSYS/MATLAB.
Abstract: Given restrictions that comfort conditions in the interior of a building are satisfied, it becomes obvious that the problem of energy conservation is a multidimensional one. Scientists from a variety of fields have been working on this problem for a few decades now; however, essentially it remains an open issue. In the beginning of this article, we define the whole problem in which the topics are: energy, comfort and control. Next, we briefly present the conventional control systems in buildings and their advantages and disadvantage. We will also see how the development of intelligent control systems has improved the efficiency of control systems for the management of indoor environment including user preferences. This paper presents a survey exploring state of the art control systems in buildings. Attention will be focused on the design of agent-based intelligent control systems in building environments. In particular, this paper presents a multi-agent control system (MACS). This advanced control system is simulated using TRNSYS/MATLAB. The simulation results show that the MACS successfully manage the user’s preferences for thermal and illuminance comfort, indoor air quality and energy conservation.

827 citations


Network Information
Related Topics (5)
Electric power system
133K papers, 1.7M citations
91% related
Renewable energy
87.6K papers, 1.6M citations
90% related
Energy consumption
101.9K papers, 1.6M citations
87% related
Photovoltaic system
103.9K papers, 1.6M citations
84% related
Control theory
299.6K papers, 3.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023710
20221,474
20211,950
20202,217
20192,343