scispace - formally typeset
Search or ask a question
Topic

Energy minimization

About: Energy minimization is a research topic. Over the lifetime, 1697 publications have been published within this topic receiving 136953 citations. The topic is also known as: Nudged Elastic Band.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present an ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local density approximation.
Abstract: We present ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local-density approximation at each molecular-dynamics step. This is possible using conjugate-gradient techniques for energy minimization, and predicting the wave functions for new ionic positions using subspace alignment. This approach avoids the instabilities inherent in quantum-mechanical molecular-dynamics calculations for metals based on the use of a fictitious Newtonian dynamics for the electronic degrees of freedom. This method gives perfect control of the adiabaticity and allows us to perform simulations over several picoseconds.

32,798 citations

Journal ArticleDOI
TL;DR: The simulation allows us to study in detail the changes in the structure-property relationship through the metal-semiconductor transition, and a detailed analysis of the local structural properties and their changes induced by an annealing process is reported.
Abstract: We present ab initio quantum-mechanical molecular-dynamics simulations of the liquid-metal--amorphous-semiconductor transition in Ge. Our simulations are based on (a) finite-temperature density-functional theory of the one-electron states, (b) exact energy minimization and hence calculation of the exact Hellmann-Feynman forces after each molecular-dynamics step using preconditioned conjugate-gradient techniques, (c) accurate nonlocal pseudopotentials, and (d) Nos\'e dynamics for generating a canonical ensemble. This method gives perfect control of the adiabaticity of the electron-ion ensemble and allows us to perform simulations over more than 30 ps. The computer-generated ensemble describes the structural, dynamic, and electronic properties of liquid and amorphous Ge in very good agreement with experiment. The simulation allows us to study in detail the changes in the structure-property relationship through the metal-semiconductor transition. We report a detailed analysis of the local structural properties and their changes induced by an annealing process. The geometrical, bonding, and spectral properties of defects in the disordered tetrahedral network are investigated and compared with experiment.

16,744 citations

Journal ArticleDOI
TL;DR: The CHARMM (Chemistry at Harvard Macromolecular Mechanics) as discussed by the authors is a computer program that uses empirical energy functions to model macromolescular systems, and it can read or model build structures, energy minimize them by first- or second-derivative techniques, perform a normal mode or molecular dynamics simulation, and analyze the structural, equilibrium, and dynamic properties determined in these calculations.
Abstract: CHARMM (Chemistry at HARvard Macromolecular Mechanics) is a highly flexible computer program which uses empirical energy functions to model macromolecular systems. The program can read or model build structures, energy minimize them by first- or second-derivative techniques, perform a normal mode or molecular dynamics simulation, and analyze the structural, equilibrium, and dynamic properties determined in these calculations. The operations that CHARMM can perform are described, and some implementation details are given. A set of parameters for the empirical energy function and a sample run are included.

14,725 citations

Journal ArticleDOI
TL;DR: This work presents two algorithms based on graph cuts that efficiently find a local minimum with respect to two types of large moves, namely expansion moves and swap moves that allow important cases of discontinuity preserving energies.
Abstract: Many tasks in computer vision involve assigning a label (such as disparity) to every pixel. A common constraint is that the labels should vary smoothly almost everywhere while preserving sharp discontinuities that may exist, e.g., at object boundaries. These tasks are naturally stated in terms of energy minimization. The authors consider a wide class of energies with various smoothness constraints. Global minimization of these energy functions is NP-hard even in the simplest discontinuity-preserving case. Therefore, our focus is on efficient approximation algorithms. We present two algorithms based on graph cuts that efficiently find a local minimum with respect to two types of large moves, namely expansion moves and swap moves. These moves can simultaneously change the labels of arbitrarily large sets of pixels. In contrast, many standard algorithms (including simulated annealing) use small moves where only one pixel changes its label at a time. Our expansion algorithm finds a labeling within a known factor of the global minimum, while our swap algorithm handles more general energy functions. Both of these algorithms allow important cases of discontinuity preserving energies. We experimentally demonstrate the effectiveness of our approach for image restoration, stereo and motion. On real data with ground truth, we achieve 98 percent accuracy.

7,413 citations

Journal ArticleDOI
TL;DR: In this article, a particle which is caught in a potential hole and which, through the shuttling action of Brownian motion, can escape over a potential barrier yields a suitable model for elucidating the applicability of the transition state method for calculating the rate of chemical reactions.

7,289 citations


Network Information
Related Topics (5)
Matrix (mathematics)
105.5K papers, 1.9M citations
79% related
Robustness (computer science)
94.7K papers, 1.6M citations
79% related
Optimization problem
96.4K papers, 2.1M citations
78% related
Artificial neural network
207K papers, 4.5M citations
76% related
Cluster analysis
146.5K papers, 2.9M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202334
2022107
202174
202069
201965
201846