scispace - formally typeset
Search or ask a question
Topic

Energy source

About: Energy source is a research topic. Over the lifetime, 88845 publications have been published within this topic receiving 1953134 citations. The topic is also known as: energy resource & source of energy.


Papers
More filters
Journal ArticleDOI
30 Apr 2009-Nature
TL;DR: A previously unknown function for autophagy in regulating intracellular lipid stores (macrolipophagy) is identified that could have important implications for human diseases with lipid over-accumulation such as those that comprise the metabolic syndrome.
Abstract: The intracellular storage and utilization of lipids are critical to maintain cellular energy homeostasis. During nutrient deprivation, cellular lipids stored as triglycerides in lipid droplets are hydrolysed into fatty acids for energy. A second cellular response to starvation is the induction of autophagy, which delivers intracellular proteins and organelles sequestered in double-membrane vesicles (autophagosomes) to lysosomes for degradation and use as an energy source. Lipolysis and autophagy share similarities in regulation and function but are not known to be interrelated. Here we show a previously unknown function for autophagy in regulating intracellular lipid stores (macrolipophagy). Lipid droplets and autophagic components associated during nutrient deprivation, and inhibition of autophagy in cultured hepatocytes and mouse liver increased triglyceride storage in lipid droplets. This study identifies a critical function for autophagy in lipid metabolism that could have important implications for human diseases with lipid over-accumulation such as those that comprise the metabolic syndrome.

3,091 citations

Journal ArticleDOI
TL;DR: A new minimal medium for enterobacteria is developed that supports growth of Escherichia coli and Salmonella typhimurium at rates comparable to those of any of the traditional media that have high phosphate concentrations, but each of the macronutrients is present at a sufficiently low level to permit isotopic labeling.
Abstract: A new minimal medium for enterobacteria has been developed. It supports growth of Escherichia coli and Salmonella typhimurium at rates comparable to those of any of the traditional media that have high phosphate concentrations, but each of the macronutrients (phosphate, sulfate, and nitrogen) is present at a sufficiently low level to permit isotopic labeling. Buffering capacity is provided by an organic dipolar ion, morpholinopropane sulfonate, which has a desirable pK (7.2) and no apparent inhibitory effect on growth. The medium has been developed with the objectives of (i) providing reproducibility of chemical composition, (ii) meeting the experimentally determined nutritional needs of the cell, (iii) avoiding an unnecessary excess of the major ionic species, (iv) facilitating the adjustment of the levels of individual ionic species, both for isotopic labeling and for nutritional studies, (v) supplying a complete array of micronutrients, (vi) setting a particular ion as the crop-limiting factor when the carbon and energy source is in excess, and (vii) providing maximal convenience in the manufacture and storage of the medium.

2,930 citations

BookDOI
TL;DR: In this article, the authors focus on the generation of electricity from clean and renewable sources, and show that wind energy has become the world's fastest growing energy source, and that renewable energy is the most promising energy source.
Abstract: As environmental concerns have focussed attention on the generation of electricity from clean and renewable sources, wind energy has become the world's fastest growing energy source. The authors dr ...

2,878 citations

Journal ArticleDOI
TL;DR: Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-basedBiofuels.
Abstract: Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels.

2,841 citations

Journal ArticleDOI
TL;DR: A comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system is provided in this article.

2,790 citations


Network Information
Related Topics (5)
Renewable energy
87.6K papers, 1.6M citations
78% related
Greenhouse gas
44.9K papers, 1.3M citations
77% related
Biomass
57.2K papers, 1.4M citations
77% related
Carbon
129.8K papers, 2.7M citations
75% related
Hydrogen
132.2K papers, 2.5M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202335
2022190
20213,446
20203,955
20194,228
20184,249