scispace - formally typeset
Topic

Engineering education

About: Engineering education is a(n) research topic. Over the lifetime, 24293 publication(s) have been published within this topic receiving 234621 citation(s).


Papers
More filters

[...]

01 Jan 1988
TL;DR: A self-scoring web-based instrument called the Index of Learning Styles that assesses preferences on four scales of the learning style model developed in the paper currently gets about 100,000 hits a year and has been translated into half a dozen languages.
Abstract: When Linda Silverman and I wrote this paper in 1987, our goal was to offer some insights about teaching and learning based on Dr. Silverman’s expertise in educational psychology and my experience in engineering education that would be helpful to some of my fellow engineering professors. When the paper was published early in 1988, the response was astonishing. Almost immediately, reprint requests flooded in from all over the world. The paper started to be cited in the engineering education literature, then in the general science education literature; it was the first article cited in the premier issue of ERIC’s National Teaching and Learning Forum; and it was the most frequently cited paper in articles published in the Journal of Engineering Education over a 10-year period. A self-scoring web-based instrument called the Index of Learning Styles that assesses preferences on four scales of the learning style model developed in the paper currently gets about 100,000 hits a year and has been translated into half a dozen languages that I know about and probably more that I don’t, even though it has not yet been validated. The 1988 paper is still cited more than any other paper I have written, including more recent papers on learning styles.

5,058 citations

Book

[...]

01 Jan 1972
TL;DR: Physical Metallurgy Principles as mentioned in this paper is intended for use in an introductory course in physical metallurgy and is designed for all engineering students at the junior or senior level and is largely theoretical, but covers all aspects of physical metelurgy and behavior of metals and alloys.
Abstract: Physical Metallurgy Principles is intended for use in an introductory course in physical metallurgy and is designed for all engineering students at the junior or senior level. The approach is largely theoretical, but covers all aspects of physical metallurgy and behavior of metals and alloys. The treatment used in this textbook is in harmony with a more fundamental approach to engineering education.

2,251 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the purpose of engineering education is to train engineers who can design, and that design thinking is difficult to learn and difficult to teach, and the most popular pedagogical model for teaching design is Project-Based Learning (PBL).
Abstract: This paper is based on the premises that the purpose of engineering education is to graduate engineers who can design, and that design thinking is complex. The paper begins by briefly reviewing the history and role of design in the engineering curriculum. Several dimensions of design thinking are then detailed, explaining why design is hard to learn and harder still to teach, and outlining the research available on how well design thinking skills are learned. The currently most-favored pedagogical model for teaching design, project-based learning (PBL), is explored next, along with available assessment data on its success. Two contexts for PBL are emphasized: first-year cornerstone courses and globally dispersed PBL courses. Finally, the paper lists some of the open research questions that must be answered to identify the best pedagogical practices of improving design learning, after which it closes by making recommendations for research aimed at enhancing design learning.

1,990 citations

[...]

07 Nov 1997

1,655 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the results of a meta-analysis that integrates research on undergraduate science, mathematics, engineering, and technology (SMET) education since 1980 are presented. But the results in this paper are limited to SMET courses and programs.
Abstract: Recent calls for instructional innovation in undergraduate science, mathematics, engineering, and technology (SMET) courses and programs highlight the need for a solid foundation of education research at the undergraduate level on which to base policy and practice. We report herein the results of a meta-analysis that integrates research on undergraduate SMET education since 1980. The meta-analysis demonstrates that various forms of small-group learning are effective in promoting greater academic achievement, more favorable attitudes toward learning, and increased persistence through SMET courses and programs. The magnitude of the effects reported in this study exceeds most findings in comparable reviews of research on educational innovations and supports more widespread implementation of small-group learning in undergraduate SMET.

1,574 citations


Network Information
Related Topics (5)
Educational technology
72.4K papers, 1.7M citations
82% related
Higher education
244.3K papers, 3.5M citations
79% related
Curriculum
177.5K papers, 2.3M citations
75% related
Educational research
38.5K papers, 1.3M citations
74% related
Professional development
81.1K papers, 1.3M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20228
2021607
20201,009
20191,046
20181,123
20171,148