scispace - formally typeset
Search or ask a question
Topic

Entropy (classical thermodynamics)

About: Entropy (classical thermodynamics) is a research topic. Over the lifetime, 8378 publications have been published within this topic receiving 155371 citations. The topic is also known as: entropy (classical thermodynamics).


Papers
More filters
Book
01 Jan 1989
TL;DR: The first law of thermodynamics -closed systems, control volumes, and the second law of entropy -a measure of disorder energy -are the properties of pure substances of high-speed fluid flow as mentioned in this paper.
Abstract: Basic concepts of thermodynamics properties of pure substances the first law of thermodynamics - closed systems, control volumes the second law of thermodynamics entropy - a measure of disorder energy - a measure of work potential gas power cycles vapour and combined power cycles refrigeration cycles thermodynamics property gas mixtures gas vapour mixtures and air conditioning chemical reactions chemical and phase equilibrium thermodynamics of high-speed fluid flow property tables and charts (SI units, English units) about the software

4,495 citations

Book
30 Apr 1988
TL;DR: In this article, the authors present an overview of the second law of thermodynamics and its application in the context of a gas turbine power plant and evaluate the entropy of the system.
Abstract: 1 Getting Started: Introductory Concepts and Definitions. 1.1 Using Thermodynamics. 1.2 Defining Systems. 1.3 Describing Systems and Their Behavior. 1.4 Measuring Mass, Length, Time, and Force. 1.5 Specific Volume. 1.6 Pressure. 1.7 Temperature. Chapter Summary and Study Guide. 2 Energy and the First Law of Thermodynamics. 2.1 Reviewing Mechanical Concepts of Energy. 2.2 Broadening Our Understanding of Work. 2.3 Broadening Our Understanding of Energy. 2.4 Energy Transfer by Heat. 2.5 Energy Accounting: Energy Balance for Closed Systems. 2.6 Energy Analysis of Cycles. Chapter Summary and Study Guide. 3 Evaluating Properties. 3.1 Getting Started. Evaluating Properties: General Considerations. 3.2 p-v-T Relation. 3.3 Studying Phase Change. 3.4 Retrieving Thermodynamic Properties. 3.5 Evaluating Pressure, Specific Volume, and Temperature. 3.6 Evaluating Specific Internal Energy and Enthalpy. 3.7 Evaluating Properties Using Computer Software. 3.8 Applying the Energy Balance Using Property Tables and Software. Chapter Summary and Study Guide. 4 Control Volume Analysis Using Energy. 4.1 Conservation of Mass for a Control Volume. 4.2 Forms of the Mass Rate Balance. 4.3 Applications of the Mass Rate Balance. 4.4 Conservation of Energy for a Control Volume. Chapter Summary and Study Guide. 5 The Second Law of Thermodynamics. 5.1 Introducing the Second Law. 5.2 Statements of the Second Law. 5.3 Identifying Irreversibilities. 5.4 Interpreting the Kelvin-Planck Statement. 5.5 Applying the Second Law to Thermodynamic Cycles. 5.6 Second Law Aspects of Power Cycles Interacting with Two Reservoirs. Chapter Summary and Study Guide. 6 Using Entropy. 6.1 Entropy-A System Property. 6.2 Retrieving Entropy Data. 6.3 Introducing the T dS Equations. 6.4 Entropy Change of an Incompressible Substance. 6.5 Entropy Change of an Ideal Gas. 6.6 Entropy Change in Internally Reversible Processes of Closed Systems. 6.7 Entropy Balance for Closed Systems. 6.8 Directionality of Processes. 6.9 Entropy Rate Balance for Control Volumes. Steady-State Flow Processes. Chapter Summary and Study Guide. 7 Exergy Analysis. 7.1 Introducing Exergy. 7.2 Conceptualizing Exergy. 7.3 Exergy of a System. 7.4 Closed System Exergy Balance. 7.5 Exergy Rate Balance for Control Volumes at Steady State. 7.6 Exergetic (Second Law) Efficiency. 7.7 Thermoeconomics. Chapter Summary and Study Guide. 8 Vapor Power Systems. 8.1 Modeling Vapor Power Systems. 8.2 Analyzing Vapor Power Systems-Rankine Cycle. 8.3 Improving Performance-Superheat and Reheat. 8.4 Improving Performance-Regenerative Vapor Power Cycle. 8.5 Other Vapor Cycle Aspects. 8.6 Case Study: Exergy Accounting of a Vapor Power Plant. Chapter Summary and Study Guide. 9 Gas Power Systems. Internal Combustion Engines. 9.1 Introducing Engine Terminology. 9.2 Air-Standard Otto Cycle. 9.3 Air-Standard Diesel Cycle. 9.4 Air-Standard Dual Cycle. Gas Turbine Power Plants. 9.5 Modeling Gas Turbine Power Plants. 9.6 Air-Standard Brayton Cycle. 9.7 Regenerative Gas Turbines. 9.8 Regenerative Gas Turbines with Reheat and Intercooling. 9.9 Gas Turbines for Aircraft Propulsion. 9.10 Combined Gas Turbine-Vapor Power Cycle. Chapter Summary and Study Guide. 10 Refrigeration and Heat Pump Systems. 10.1 Vapor Refrigeration Systems. 10.2 Analyzing Vapor-Compression Refrigeration Systems. 10.3 Refrigerant Properties. 10.4 Cascade and Multistage Vapor-Compression Systems. 10.5 Absorption Refrigeration. 10.6 Heat Pump Systems. 10.7 Gas Refrigeration Systems. Chapter Summary and Study Guide. 11 Thermodynamic Relations. 11.1 Using Equations of State. 11.2 Important Mathematical Relations. 11.3 Developing Property Relations. 11.4 Evaluating Changes in Entropy, Internal Energy, and Enthalpy. 11.5 Other Thermodynamic Relations. 11.6 Constructing Tables of Thermodynamic Properties. Charts for Enthalpy and Entropy. 11.8 p-v-T Relations for Gas Mixtures. 11.9 Analyzing Multicomponent Systems. Chapter Summary and Study Guide. 12 Ideal Gas Mixture and Psychrometric Applications. Ideal Gas Mixtures: General Considerations. 12.1 Describing Mixture Composition. 12.2 Relating p, V, and T for Ideal Gas Mixtures. 12.3 Evaluating U, H, S, and Specific Heats. 12.4 Analyzing Systems Involving Mixtures. Psychrometric Applications. 12.5 Introducing Psychrometric Principles. 12.6 Psychrometers: Measuring the Wet-Bulb and Dry-Bulb Temperatures. 12.7 Psychrometric Charts. 12.8 Analyzing Air-Conditioning Processes. 12.9 Cooling Towers. Chapter Summary and Study Guide. 13 Reacting Mixtures and Combustion. Combustion Fundamentals. 13.1 Introducing Combustion. 13.2 Conservation of Energy-Reacting Systems. 13.3 Determining the Adiabatic Flame Temperature. 13.4 Fuel Cells. 13.5 Absolute Entropy and the Third Law of Thermodynamics. Chemical Exergy. 13.6 Introducing Chemical Exergy. 13.7 Standard Chemical Exergy. 13.8 Exergy Summary. 13.9 Exergetic (Second Law) Efficiencies of Reacting Systems. Chapter Summary and Study Guide. 14 Chemical and Phase Equilibrium. Equilibrium Fundamentals. 14.1 Introducing Equilibrium Criteria. Chemical Equilibrium. 14.2 Equation of Reaction Equilibrium. 14.3 Calculating Equilibrium Compositions. 14.4 Further Examples of the Use of the Equilibrium Constant. Phase Equilibrium. 14.5 Equilibrium Between Two Phases of a Pure Substance. 14.6 Equilibrium of Multicomponent, Multiphase Systems. Chapter Summary and Study Guide. Appendix Tables, Figures, and Charts. Index to Tables in SI Units. Index to Tables in English Units. Index to Figures and Charts. Index. Answers to Selected Problems: Visit the student.

2,775 citations

Journal ArticleDOI
TL;DR: Results indicate that the normalised entropy measure provides significantly improved behaviour over a range of imaged fields of view.

2,364 citations

Journal ArticleDOI
TL;DR: In this article, a unified treatment of thermoelasticity by application and further developments of the methods of irreversible thermodynamics is presented, along with a new definition of the dissipation function in terms of the time derivative of an entropy displacement.
Abstract: A unified treatment is presented of thermoelasticity by application and further developments of the methods of irreversible thermodynamics. The concept of generalized free energy introduced in a previous publication plays the role of a ``thermoelastic potential'' and is used along with a new definition of the dissipation function in terms of the time derivative of an entropy displacement. The general laws of thermoelasticity are formulated in a variational form along with a minimum entropy production principle. This leads to equations of the Lagrangian type, and the concept of thermal force is introduced by means of a virtual work definition. Heat conduction problems can then be formulated by the methods of matrix algebra and mechanics. This also leads to the very general property that the entropy density obeys a diffusion‐type law. General solutions of the equations of thermoelasticity are also given using the Papkovitch‐Boussinesq potentials. Examples are presented and it is shown how the generalized coordinate method may be used to calculate the thermoelastic internal damping of elastic bodies.

2,287 citations

Book
01 Jan 1982

1,838 citations


Network Information
Related Topics (5)
Phase transition
82.8K papers, 1.6M citations
84% related
Boundary value problem
145.3K papers, 2.7M citations
80% related
Excited state
102.2K papers, 2.2M citations
79% related
Differential equation
88K papers, 2M citations
78% related
Particle
96.5K papers, 1.9M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202244
20211,581
2020627
2019431
2018419
2017334