scispace - formally typeset
Search or ask a question
Topic

Entropy (information theory)

About: Entropy (information theory) is a research topic. Over the lifetime, 23293 publications have been published within this topic receiving 472212 citations. The topic is also known as: entropy & Shannon entropy.


Papers
More filters
Book
01 Jan 1990
TL;DR: This book is an updated version of the information theory classic, first published in 1990, with expanded treatment of stationary or sliding-block codes and their relations to traditional block codes and discussion of results from ergodic theory relevant to information theory.
Abstract: This book is an updated version of the information theory classic, first published in 1990. About one-third of the book is devoted to Shannon source and channel coding theorems; the remainder addresses sources, channels, and codes and on information and distortion measures and their properties. New in this edition:Expanded treatment of stationary or sliding-block codes and their relations to traditional block codesExpanded discussion of results from ergodic theory relevant to information theoryExpanded treatment of B-processes -- processes formed by stationary coding memoryless sourcesNew material on trading off information and distortion, including the Marton inequalityNew material on the properties of optimal and asymptotically optimal source codesNew material on the relationships of source coding and rate-constrained simulation or modeling of random processesSignificant material not covered in other information theory texts includes stationary/sliding-block codes, a geometric view of information theory provided by process distance measures, and general Shannon coding theorems for asymptotic mean stationary sources, which may be neither ergodic nor stationary, and d-bar continuous channels.

1,810 citations

Journal ArticleDOI
TL;DR: In this article, an entropy criterion is proposed to estimate the number of clusters arising from a mixture model, which is derived from a relation linking the likelihood and the classification likelihood of a mixture.
Abstract: In this paper, we consider an entropy criterion to estimate the number of clusters arising from a mixture model. This criterion is derived from a relation linking the likelihood and the classification likelihood of a mixture. Its performance is investigated through Monte Carlo experiments, and it shows favorable results compared to other classical criteria.

1,689 citations

Journal Article
TL;DR: It is proved that the problem of finding the configuration that maximizes mutual information is NP-complete, and a polynomial-time approximation is described that is within (1-1/e) of the optimum by exploiting the submodularity of mutual information.
Abstract: When monitoring spatial phenomena, which can often be modeled as Gaussian processes (GPs), choosing sensor locations is a fundamental task. There are several common strategies to address this task, for example, geometry or disk models, placing sensors at the points of highest entropy (variance) in the GP model, and A-, D-, or E-optimal design. In this paper, we tackle the combinatorial optimization problem of maximizing the mutual information between the chosen locations and the locations which are not selected. We prove that the problem of finding the configuration that maximizes mutual information is NP-complete. To address this issue, we describe a polynomial-time approximation that is within (1-1/e) of the optimum by exploiting the submodularity of mutual information. We also show how submodularity can be used to obtain online bounds, and design branch and bound search procedures. We then extend our algorithm to exploit lazy evaluations and local structure in the GP, yielding significant speedups. We also extend our approach to find placements which are robust against node failures and uncertainties in the model. These extensions are again associated with rigorous theoretical approximation guarantees, exploiting the submodularity of the objective function. We demonstrate the advantages of our approach towards optimizing mutual information in a very extensive empirical study on two real-world data sets.

1,593 citations

Proceedings Article
03 Jul 2018
TL;DR: This paper proposes soft actor-critic, an off-policy actor-Critic deep RL algorithm based on the maximum entropy reinforcement learning framework, and achieves state-of-the-art performance on a range of continuous control benchmark tasks, outperforming prior on-policy and off- policy methods.
Abstract: Model-free deep reinforcement learning (RL) algorithms have been demonstrated on a range of challenging decision making and control tasks. However, these methods typically suffer from two major challenges: very high sample complexity and brittle convergence properties, which necessitate meticulous hyperparameter tuning. Both of these challenges severely limit the applicability of such methods to complex, real-world domains. In this paper, we propose soft actor-critic, an off-policy actor-critic deep RL algorithm based on the maximum entropy reinforcement learning framework. In this framework, the actor aims to maximize expected reward while also maximizing entropy. That is, to succeed at the task while acting as randomly as possible. Prior deep RL methods based on this framework have been formulated as Q-learning methods. By combining off-policy updates with a stable stochastic actor-critic formulation, our method achieves state-of-the-art performance on a range of continuous control benchmark tasks, outperforming prior on-policy and off-policy methods. Furthermore, we demonstrate that, in contrast to other off-policy algorithms, our approach is very stable, achieving very similar performance across different random seeds.

1,500 citations

Journal ArticleDOI
TL;DR: In this article, the authors use an exact local expansion of the entropy function to prove almost sure consistency and central limit theorems for three of the most commonly used discretized information estimators.
Abstract: We present some new results on the nonparametric estimation of entropy and mutual information. First, we use an exact local expansion of the entropy function to prove almost sure consistency and central limit theorems for three of the most commonly used discretized information estimators. The setup is related to Grenander's method of sieves and places no assumptions on the underlying probability measure generating the data. Second, we prove a converse to these consistency theorems, demonstrating that a misapplication of the most common estimation techniques leads to an arbitrarily poor estimate of the true information, even given unlimited data. This "inconsistency" theorem leads to an analytical approximation of the bias, valid in surprisingly small sample regimes and more accurate than the usual 1/N formula of Miller and Madow over a large region of parameter space. The two most practical implications of these results are negative: (1) information estimates in a certain data regime are likely contaminated by bias, even if "bias-corrected" estimators are used, and (2) confidence intervals calculated by standard techniques drastically underestimate the error of the most common estimation methods.Finally, we note a very useful connection between the bias of entropy estimators and a certain polynomial approximation problem. By casting bias calculation problems in this approximation theory framework, we obtain the best possible generalization of known asymptotic bias results. More interesting, this framework leads to an estimator with some nice properties: the estimator comes equipped with rigorous bounds on the maximum error over all possible underlying probability distributions, and this maximum error turns out to be surprisingly small. We demonstrate the application of this new estimator on both real and simulated data.

1,451 citations


Network Information
Related Topics (5)
Cluster analysis
146.5K papers, 2.9M citations
87% related
Artificial neural network
207K papers, 4.5M citations
87% related
Matrix (mathematics)
105.5K papers, 1.9M citations
85% related
Nonlinear system
208.1K papers, 4M citations
85% related
Optimization problem
96.4K papers, 2.1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202210
2021991
20201,509
20191,717
20181,557
20171,317