scispace - formally typeset

Topic

Epidermis (botany)

About: Epidermis (botany) is a(n) research topic. Over the lifetime, 7254 publication(s) have been published within this topic receiving 308153 citation(s).
Papers
More filters

Journal ArticleDOI
James G. Rheinwatd1, Howard Green1Institutions (1)
01 Nov 1975-Cell
TL;DR: Human diploid epidermis epidermal cells have been successfully grown in serial culture and it is possible to isolate keratinocyte clones free of viable fibroblasts, and human diploids keratinocytes appear to have a finite culture lifetime.
Abstract: Human diploid epidermis epidermal cells have been successfully grown in serial culture. To initiate colony formation, they require the presence of fibroblasts, but proliferation of fibroblasts must be controlled so that the epidermal cell population is not overgrown. Both conditions can be achieved by the use of lethally irradiated 3T3 cells at the correct density. When trypsinized human skin cells are plated together with the 3T3 cells, the growth of the human fibroblasts is largely suppressed, but epidermal cells grow from single cells into colonies. Each colony consists of keratinocytes ultimately forming a stratified squamous epithelium in which the dividing cells are confined to the lowest layer(s). Hydrocortisone is added to the medium, since in secondary and subsequent subcultures it makes the colony morphology more oderly and distinctive, and maintains proliferation at a slightly greater rate. Under these culture conditions, it is possible to isolate keratinocyte clones free of viable fibroblasts. Like human diploid fibroblasts, human diploid keratinocytes appear to have a finite culture lifetime. For 7 strains studied, the culture lifetime ranged from 20-50 cell generations. The plating efficiency of the epidermal cells taken directly from skin was usually 0.1-1.0%. On subsequent transfer of the cultures initiated from newborns, the plating efficiency rose to 10% or higher, but was most often in the range of 1-5% and dropped sharply toward the end of their culture life. The plating efficiency and culture lifetime were lower for keratinocytes of older persons.

3,992 citations


Journal ArticleDOI
Ana Rakita1, Nenad Nikolić1, Michael Mildner1, Johannes Matiasek  +1 moreInstitutions (1)
08 Jan 2020-Scientific Reports
TL;DR: A novel wound model based on application of negative pressure and its effects for epidermal regeneration and immune cell behaviour is presented, which recapitulates the main features of epithelial wound regeneration, and can be applied for testing wound healing therapies and investigating underlying mechanisms.
Abstract: A large body of literature is available on wound healing in humans. Nonetheless, a standardized ex vivo wound model without disruption of the dermal compartment has not been put forward with compelling justification. Here, we present a novel wound model based on application of negative pressure and its effects for epidermal regeneration and immune cell behaviour. Importantly, the basement membrane remained intact after blister roof removal and keratinocytes were absent in the wounded area. Upon six days of culture, the wound was covered with one to three-cell thick K14+Ki67+ keratinocyte layers, indicating that proliferation and migration were involved in wound closure. After eight to twelve days, a multi-layered epidermis was formed expressing epidermal differentiation markers (K10, filaggrin, DSG-1, CDSN). Investigations about immune cell-specific manners revealed more T cells in the blister roof epidermis compared to normal epidermis. We identified several cell populations in blister roof epidermis and suction blister fluid that are absent in normal epidermis which correlated with their decrease in the dermis, indicating a dermal efflux upon negative pressure. Together, our model recapitulates the main features of epithelial wound regeneration, and can be applied for testing wound healing therapies and investigating underlying mechanisms.

2,641 citations


Journal ArticleDOI
27 Oct 2000-Cell
TL;DR: The matrix metalloproteinase MMP-9/gelatinase B is upregulated in angiogenic dysplasias and invasive cancers of the epidermis in a mouse model of multi-stage tumorigenesis elicited by HPV16 oncogenes, suggesting inflammatory cells can be coconspirators in carcinogenesis.
Abstract: The matrix metalloproteinase MMP-9/gelatinase B is upregulated in angiogenic dysplasias and invasive cancers of the epidermis in a mouse model of multi-stage tumorigenesis elicited by HPV16 oncogenes. Transgenic mice lacking MMP-9 show reduced keratinocyte hyperproliferation at all neoplastic stages and a decreased incidence of invasive tumors. Yet those carcinomas that do arise in the absence of MMP-9 exhibit a greater loss of keratinocyte differentiation, indicative of a more aggressive and higher grade tumor. Notably, MMP-9 is predominantly expressed in neutrophils, macrophages, and mast cells, rather than in oncogene-positive neoplastic cells. Chimeric mice expressing MMP-9 only in cells of hematopoietic origin, produced by bone marrow transplantation, reconstitute the MMP-9-dependent contributions to squamous carcinogenesis. Thus, inflammatory cells can be coconspirators in carcinogenesis.

1,260 citations


Journal ArticleDOI
Liam Dolan1, Kees Janmaat1, Viola Willemsen1, Paul Linstead1  +3 moreInstitutions (1)
01 Sep 1993-Development
TL;DR: The anatomy of the developing root of Arabidopsis is described using conventional histological techniques, scanning and transmission electron microscopy and a model of meristem activity is proposed, which underpins future work on the developmental genetics of root morphogenesis.
Abstract: The anatomy of the developing root of Arabidopsis is described using conventional histological techniques, scanning and transmission electron microscopy. The root meristem is derived from cells of the hypophysis and adjacent cells of the embryo proper. The postembryonic organization of the root is apparent in the mature embryo and is maintained in the growing primary root after germination. Cell number and location is relatively invariant in the primary root, with 8 cortical and endodermal cell files but more variable numbers of pericycle and epidermal cells. The organisation of cells in lateral roots is similar to that of the primary root but with more variability in the numbers of cell files in each layer. [3H]thymidine labeling of actively growing roots indicates that a quiescent centre of four central cells (derived from the hypophysis) is located between the root cap columella and the stele. This plate of four cells is surrounded by three groups of cells in, proximal, distal and lateral positions. The labeling patterns of these cells suggest that they are the initials for the files of cells that comprise the root. They give rise to four sets of cell files: the stele, the cortex and endodermis, the epidermis and lateral root-cap and the columella. A model of meristem activity is proposed based on these data. This description of Arabidopsis root structure underpins future work on the developmental genetics of root morphogenesis.

1,253 citations


Journal ArticleDOI
TL;DR: It will be shown here that large amounts of cultured epithelium can be generated from a small piece of epidermis in a short time.
Abstract: Owing to several recent developments, the cultivability of epidermal keratinocytes, particularly those of the human, has been greatly improved. Under the conditions used, single cultured cells generate stratified colonies that ultimately fuse and form an epithelium that is reasonable approximation of the epidermis. It will be shown here that large amounts of cultured epithelium can be generated from a small piece of epidermis in a short time. We wish to bring to the attention of surgeons and cell biologists the possibility of using culture-grown epithelium derived from the same individual to restore defects in the epidermis.

1,174 citations


Network Information
Related Topics (5)
Gene expression

113.3K papers, 5.5M citations

76% related
Cellular differentiation

90.9K papers, 6M citations

75% related
Transcription factor

82.8K papers, 5.4M citations

75% related
Complementary DNA

55.3K papers, 2.7M citations

75% related
Cell culture

133.3K papers, 5.3M citations

74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
2021125
2020135
2019140
2018127
2017165

Top Attributes

Show by:

Topic's top 5 most impactful authors

Fiona M. Watt

47 papers, 8.1K citations

Peter M. Elias

34 papers, 2.5K citations

Dennis R. Roop

25 papers, 2.1K citations

Lorenzo Alibardi

20 papers, 304 citations

Georg Stingl

19 papers, 2.8K citations