scispace - formally typeset
Search or ask a question
Topic

Epigenetics

About: Epigenetics is a research topic. Over the lifetime, 38159 publications have been published within this topic receiving 1794572 citations. The topic is also known as: Epigenetic theory.


Papers
More filters
Journal ArticleDOI
23 Oct 2008-Nature
TL;DR: The interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated gliobeasts, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer.
Abstract: Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas ( TCGA) pilot project aims to assess the value of large- scale multi- dimensional analysis of these molecular characteristics in human cancer and to provide the data rapidly to the research community. Here we report the interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas - the most common type of primary adult brain cancer - and nucleotide sequence aberrations in 91 of the 206 glioblastomas. This analysis provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the phosphatidylinositol- 3- OH kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered in the development of glioblastoma. Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential clinical implications. Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer.

6,761 citations

Journal ArticleDOI
TL;DR: The heritability of methylation states and the secondary nature of the decision to invite or exclude methylation support the idea that DNA methylation is adapted for a specific cellular memory function in development.
Abstract: The character of a cell is defined by its constituent proteins, which are the result of specific patterns of gene expression. Crucial determinants of gene expression patterns are DNA-binding transcription factors that choose genes for transcriptional activation or repression by recognizing the sequence of DNA bases in their promoter regions. Interaction of these factors with their cognate sequences triggers a chain of events, often involving changes in the structure of chromatin, that leads to the assembly of an active transcription complex (e.g., Cosma et al. 1999). But the types of transcription factors present in a cell are not alone sufficient to define its spectrum of gene activity, as the transcriptional potential of a genome can become restricted in a stable manner during development. The constraints imposed by developmental history probably account for the very low efficiency of cloning animals from the nuclei of differentiated cells (Rideout et al. 2001; Wakayama and Yanagimachi 2001). A “transcription factors only” model would predict that the gene expression pattern of a differentiated nucleus would be completely reversible upon exposure to a new spectrum of factors. Although many aspects of expression can be reprogrammed in this way (Gurdon 1999), some marks of differentiation are evidently so stable that immersion in an alien cytoplasm cannot erase the memory. The genomic sequence of a differentiated cell is thought to be identical in most cases to that of the zygote from which it is descended (mammalian B and T cells being an obvious exception). This means that the marks of developmental history are unlikely to be caused by widespread somatic mutation. Processes less irrevocable than mutation fall under the umbrella term “epigenetic” mechanisms. A current definition of epigenetics is: “The study of mitotically and/or meiotically heritable changes in gene function that cannot be explained by changes in DNA sequence” (Russo et al. 1996). There are two epigenetic systems that affect animal development and fulfill the criterion of heritability: DNA methylation and the Polycomb-trithorax group (Pc-G/trx) protein complexes. (Histone modification has some attributes of an epigenetic process, but the issue of heritability has yet to be resolved.) This review concerns DNA methylation, focusing on the generation, inheritance, and biological significance of genomic methylation patterns in the development of mammals. Data will be discussed favoring the notion that DNA methylation may only affect genes that are already silenced by other mechanisms in the embryo. Embryonic transcription, on the other hand, may cause the exclusion of the DNA methylation machinery. The heritability of methylation states and the secondary nature of the decision to invite or exclude methylation support the idea that DNA methylation is adapted for a specific cellular memory function in development. Indeed, the possibility will be discussed that DNA methylation and Pc-G/trx may represent alternative systems of epigenetic memory that have been interchanged over evolutionary time. Animal DNA methylation has been the subject of several recent reviews (Bird and Wolffe 1999; Bestor 2000; Hsieh 2000; Costello and Plass 2001; Jones and Takai 2001). For recent reviews of plant and fungal DNA methylation, see Finnegan et al. (2000), Martienssen and Colot (2001), and Matzke et al. (2001).

6,691 citations

Journal ArticleDOI
TL;DR: MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment and has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein-coding genes involved in cancer.
Abstract: MicroRNA (miRNA ) alterations are involved in the initiation and progression of human cancer. The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery. MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment. In addition, profiling has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein- coding genes involved in cancer.

6,345 citations

Journal Article
TL;DR: The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery as discussed by the authors.
Abstract: MicroRNA (miRNA) alterations are involved in the initiation and progression of human cancer. The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery. MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment. In addition, profiling has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein- coding genes involved in cancer.

6,306 citations

Journal ArticleDOI
TL;DR: Advances in the understanding of the mechanism and role of DNA methylation in biological processes are reviewed, showing that epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression.
Abstract: Cells of a multicellular organism are genetically homogeneous but structurally and functionally heterogeneous owing to the differential expression of genes. Many of these differences in gene expression arise during development and are subsequently retained through mitosis. Stable alterations of this kind are said to be 'epigenetic', because they are heritable in the short term but do not involve mutations of the DNA itself. Research over the past few years has focused on two molecular mechanisms that mediate epigenetic phenomena: DNA methylation and histone modifications. Here, we review advances in the understanding of the mechanism and role of DNA methylation in biological processes. Epigenetic effects by means of DNA methylation have an important role in development but can also arise stochastically as animals age. Identification of proteins that mediate these effects has provided insight into this complex process and diseases that occur when it is perturbed. External influences on epigenetic processes are seen in the effects of diet on long-term diseases such as cancer. Thus, epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression. The extent to which environmental effects can provoke epigenetic responses represents an exciting area of future research.

5,760 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
95% related
Transcription factor
82.8K papers, 5.4M citations
94% related
Gene expression
113.3K papers, 5.5M citations
93% related
Signal transduction
122.6K papers, 8.2M citations
93% related
Gene
211.7K papers, 10.3M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20237,355
20228,836
20213,485
20203,295
20193,129