scispace - formally typeset
Search or ask a question

Showing papers on "Epileptogenesis published in 2015"


Journal ArticleDOI
TL;DR: Future efforts to manage the epileptic patient with glutamatergic-centric treatments now hold greater potential, as better understanding of this system has generated novel therapeutic targets that directly and indirectly modulate glutamatorgic signaling.
Abstract: Epilepsy is broadly characterized by aberrant neuronal excitability. Glutamate is the predominant excitatory neurotransmitter in the adult mammalian brain; thus, much of past epilepsy research has attempted to understand the role of glutamate in seizures and epilepsy. Seizures induce elevations in extracellular glutamate, which then contribute to excitotoxic damage. Chronic seizures can alter neuronal and glial expression of glutamate receptors and uptake transporters, further contributing to epileptogenesis. Evidence points to a shared glutamate pathology for epilepsy and other central nervous system (CNS) disorders, including depression, which is often a comorbidity of epilepsy. Therapies that target glutamatergic neurotransmission are available, but many have met with difficulty because of untoward adverse effects. Better understanding of this system has generated novel therapeutic targets that directly and indirectly modulate glutamatergic signaling. Thus, future efforts to manage the epileptic patient with glutamatergic-centric treatments now hold greater potential.

235 citations


Journal ArticleDOI
TL;DR: Data suggest that a shift in the relative expression of neuronal NKCC1 and KCC2, similar to that observed in immature neurons during development, may contribute to astrogliosis-associated seizures.
Abstract: Epilepsy is one of the most common chronic neurologic diseases, yet approximately one-third of affected patients do not respond to anticonvulsive drugs that target neurons or neuronal circuits. Reactive astrocytes are commonly found in putative epileptic foci and have been hypothesized to be disease contributors because they lose essential homeostatic capabilities. However, since brain pathology induces astrocytes to become reactive, it is difficult to distinguish whether astrogliosis is a cause or a consequence of epileptogenesis. We now present a mouse model of genetically induced, widespread chronic astrogliosis after conditional deletion of β1-integrin (Itgβ1). In these mice, astrogliosis occurs in the absence of other pathologies and without BBB breach or significant inflammation. Electroencephalography with simultaneous video recording revealed that these mice develop spontaneous seizures during the first six postnatal weeks of life and brain slices show neuronal hyperexcitability. This was not observed in mice with neuronal-targeted β1-integrin deletion, supporting the hypothesis that astrogliosis is sufficient to induce epileptic seizures. Whole-cell patch-clamp recordings from astrocytes further suggest that the heightened excitability was associated with impaired astrocytic glutamate uptake. Moreover, the relative expression of the cation-chloride cotransporters (CCC) NKCC1 (Slc12a2) and KCC2 (Slc12a5), which are responsible for establishing the neuronal Cl− gradient that governs GABAergic inhibition were altered and the NKCC1 inhibitor bumetanide eliminated seizures in a subgroup of mice. These data suggest that a shift in the relative expression of neuronal NKCC1 and KCC2, similar to that observed in immature neurons during development, may contribute to astrogliosis-associated seizures.

219 citations


Journal ArticleDOI
TL;DR: The data from animal models and human TLE patients on the adverse effects of antiepileptic medications and the plausible ameliorating effects of antioxidants as an adjunct therapy are reviewed.
Abstract: An insult to the brain (such as the first seizure) causes excitotoxicity, neuroinflammation, and production of reactive oxygen/nitrogen species (ROS/RNS). ROS and RNS produced during status epilepticus (SE) overwhelm the mitochondrial natural antioxidant defense mechanism. This leads to mitochondrial dysfunction and damage to the mitochondrial DNA. This in turn affects synthesis of various enzyme complexes that are involved in electron transport chain. Resultant effects that occur during epileptogenesis include lipid peroxidation, reactive gliosis, hippocampal neurodegeneration, reorganization of neural networks, and hypersynchronicity. These factors predispose the brain to spontaneous recurrent seizures (SRS), which ultimately establish into temporal lobe epilepsy (TLE). This review discusses some of these issues. Though antiepileptic drugs (AEDs) are beneficial to control/suppress seizures, their long term usage has been shown to increase ROS/RNS in animal models and human patients. In established TLE, ROS/RNS are shown to be harmful as they can increase the susceptibility to SRS. Further, in this paper, we review briefly the data from animal models and human TLE patients on the adverse effects of antiepileptic medications and the plausible ameliorating effects of antioxidants as an adjunct therapy.

166 citations


Journal ArticleDOI
TL;DR: This review will discuss how BBB dysfunction can affect neuronal function and how this can lead to seizures and epilepsy, and summarize new therapies that aim to preserve or restore BBB function in order to prevent or reduce epileptogenesis.

157 citations


Journal ArticleDOI
TL;DR: How the BBB is disrupted as a consequence of SE and how this BBB breakdown may be involved in epileptogenesis is discussed.

140 citations


Journal ArticleDOI
TL;DR: The results suggest that specific cortical neuronal microcircuits may initiate and facilitate the spread of epileptiform activity following TBI, and increased glutamatergic signaling due to loss of GABAergic control may provide a mechanism by which TBI can give rise to post-traumatic epilepsy.
Abstract: Traumatic brain injury (TBI) is a major risk factor for developing pharmaco-resistant epilepsy. Although disruptions in brain circuitry are associated with TBI, the precise mechanisms by which brain injury leads to epileptiform network activity is unknown. Using controlled cortical impact (CCI) as a model of TBI, we examined how cortical excitability and glutamatergic signaling was altered following injury. We optically mapped cortical glutamate signaling using FRET-based glutamate biosensors, while simultaneously recording cortical field potentials in acute brain slices 2-4 weeks following CCI. Cortical electrical stimulation evoked polyphasic, epileptiform field potentials and disrupted the input-output relationship in deep layers of CCI-injured cortex. High-speed glutamate biosensor imaging showed that glutamate signaling was significantly increased in the injured cortex. Elevated glutamate responses correlated with epileptiform activity, were highest directly adjacent to the injury, and spread via deep cortical layers. Immunoreactivity for markers of GABAergic interneurons were significantly decreased throughout CCI cortex. Lastly, spontaneous inhibitory postsynaptic current frequency decreased and spontaneous excitatory postsynaptic current increased after CCI injury. Our results suggest that specific cortical neuronal microcircuits may initiate and facilitate the spread of epileptiform activity following TBI. Increased glutamatergic signaling due to loss of GABAergic control may provide a mechanism by which TBI can give rise to post-traumatic epilepsy.

136 citations


Journal ArticleDOI
TL;DR: Evidence is provided based on clinical research and animal models that suggest that these cortical regions may act as key seizure-trigger zones and, even, epileptogenesis.
Abstract: Understanding neural network behavior is essential to shed light on epileptogenesis and seizure propagation. The interconnectivity and plasticity of mammalian limbic and neocortical brain regions provide the substrate for the hypersynchrony and hyperexcitability associated with seizure activity. Recurrent unprovoked seizures are the hallmark of epilepsy, and limbic epilepsy is the most common type of medically-intractable focal epilepsy in adolescents and adults that necessitates surgical evaluation. In this review, we describe the role and relationships among the piriform (PIRC), perirhinal (PRC), and entorhinal cortex (ERC) in seizure-generation and epilepsy. The inherent function, anatomy, and histological composition of these cortical regions are discussed. In addition, the neurotransmitters, intrinsic and extrinsic connections, and the interaction of these regions are described. Furthermore, we provide evidence based on clinical research and animal models that suggest that these cortical regions may act as key seizure-trigger zones and, even, epileptogenesis.

133 citations


Journal ArticleDOI
Peter B. Crino1
TL;DR: Although it is widely believed that structural alterations induced by hyperactivated mTOR signaling are critical for epileptogenesis, newer evidence suggests that mTOR activation on its own may enhance neuronal excitability.
Abstract: Over the past decade enhanced activation of the mammalian target of rapamycin (mTOR)-signaling cascade has been identified in focal malformations of cortical development (MCD) subtypes, which have been collectively referred to as "mTORopathies." Mutations in mTOR regulatory genes (e.g., TSC1, TSC2, AKT3, DEPDC5) have been associated with several focal MCD highly associated with epilepsy such as tuberous sclerosis complex (TSC), hemimegalencephaly (HME; brain malformation associated with dramatic enlargement of one brain hemisphere), and cortical dysplasia. mTOR plays important roles in the regulation of cell division, growth, and survival, and, thus, aberrant activation of the cascade during cortical development can cause dramatic alterations in cell size, cortical lamination, and axon and dendrite outgrowth often observed in focal MCD. Although it is widely believed that structural alterations induced by hyperactivated mTOR signaling are critical for epileptogenesis, newer evidence suggests that mTOR activation on its own may enhance neuronal excitability. Clinical trials with mTOR inhibitors have shown efficacy in the treatment of seizures associated with focal MCD.

117 citations


Journal Article
TL;DR: PET receptor imaging studies performed in limited centers help to understand the role of neurotransmitters in epileptogenesis, identify epileptic foci and investigate new treatment approaches.
Abstract: Various PET studies, such as measurements of glucose, serotonin and oxygen metabolism, cerebral blood flow and receptor bindings are availabe for epilepsy. (18)Fluoro-2-deoxyglucose ((18)F-FDG) PET imaging of brain glucose metabolism is a well established and widely available technique. Studies have demonstrated that the sensitivity of interictal FDG-PET is higher than interictal SPECT and similar to ictal SPECT for the lateralization and localization of epileptogenic foci in presurgical patients refractory to medical treatments who have noncontributory EEG and MRI. In addition to localizing epileptogenic focus, FDG-PET provide additional important information on the functional status of the rest of the brain. The main limitation of interictal FDG-PET is that it cannot precisely define the surgical margin as the area of hypometabolism usually extends beyond the epileptogenic zone. Various neurotransmitters (GABA, glutamate, opiates, serotonin, dopamine, acethylcholine, and adenosine) and receptor subtypes are involved in epilepsy. PET receptor imaging studies performed in limited centers help to understand the role of neurotransmitters in epileptogenesis, identify epileptic foci and investigate new treatment approaches. PET receptor imaging studies have demonstrated reduced (11)C-flumazenil (GABAA-cBDZ) and (18)F-MPPF (5-HT1A serotonin) and increased (11)C-cerfentanil (mu opiate) and (11)C-MeNTI (delta opiate) bindings in the area of seizure. (11)C-flumazenil has been reported to be more sensitive than FDG-PET for identifying epileptic foci. The area of abnormality on GABAAcBDZ and opiate receptor images is usually smaller and more circumscribed than the area of hypometabolism on FDG images. Studies have demonstrated that (11)C-alpha-methyl-L-tryptophan PET (to study synthesis of serotonin) can detect the epileptic focus within malformations of cortical development and helps in differentiating epileptogenic from non-epileptogenic tubers in patients with tuberous sclerosis complex. (15)O-H2O PET was reported to have a similar sensitivity to FDG-PET in detecting epileptic foci.

114 citations


Journal ArticleDOI
TL;DR: It is shown that SE leads to rapid dephosphorylation of residue serine 940, and it is demonstrated that deficits in S940 phosphorylation directly contribute to the onset and severity of SE.
Abstract: The K+/Cl– cotransporter (KCC2) allows adult neurons to maintain low intracellular Cl– levels, which are a prerequisite for efficient synaptic inhibition upon activation of γ-aminobutyric acid receptors. Deficits in KCC2 activity are implicated in epileptogenesis, but how increased neuronal activity leads to transporter inactivation is ill defined. In vitro, the activity of KCC2 is potentiated via phosphorylation of serine 940 (S940). Here we have examined the role this putative regulatory process plays in determining KCC2 activity during status epilepticus (SE) using knockin mice in which S940 is mutated to an alanine (S940A). In wild-type mice, SE induced by kainate resulted in dephosphorylation of S940 and KCC2 internalization. S940A homozygotes were viable and exhibited comparable basal levels of KCC2 expression and activity relative to WT mice. However, exposure of S940A mice to kainate induced lethality within 30 min of kainate injection and subsequent entrance into SE. We assessed the effect of the S940A mutation in cultured hippocampal neurons to explore the mechanisms underlying this phenotype. Under basal conditions, the mutation had no effect on neuronal Cl– extrusion. However, a selective deficit in KCC2 activity was seen in S940A neurons upon transient exposure to glutamate. Significantly, whereas the effects of glutamate on KCC2 function could be ameliorated in WT neurons with agents that enhance S940 phosphorylation, this positive modulation was lost in S940A neurons. Collectively our results suggest that phosphorylation of S940 plays a critical role in potentiating KCC2 activity to limit the development of SE.

110 citations


Journal ArticleDOI
TL;DR: The changes in microglial proinflammatory M1 and antiinflammatory M2 marker expression during epileptogenesis in the chronic pilocarpine and intrahippocampal kainate models are characterized.
Abstract: ObjectiveTo characterize the changes in microglial proinflammatory M1 and antiinflammatory M2 marker expression during epileptogenesis in the chronic pilocarpine and intrahippocampal kainate models.

Journal ArticleDOI
01 Jan 2015-Glia
TL;DR: It is suggested GABAergic disinhibition renders peritumoral neuronal networks hyper‐excitable and susceptible to seizures triggered by excitatory stimuli, and proposes KCC2 as a therapeutic target.
Abstract: Seizures frequently accompany gliomas and often escalate to peritumoral epilepsy. Previous work revealed the importance of tumor-derived excitatory glutamate (Glu) release mediated by the cystine-glutamate transporter (SXC) in epileptogenesis. We now show a novel contribution of GABAergic disinhibition to disease pathophysiology. In a validated mouse glioma model, we found that peritumoral parvalbumin-positive GABAergic inhibitory interneurons are significantly reduced, corresponding with deficits in spontaneous and evoked inhibitory neurotransmission. Most remaining peritumoral neurons exhibit elevated intracellular Cl(-) concentration ([Cl(-) ]i ) and consequently depolarizing, excitatory gamma-aminobutyric acid (GABA) responses. In these neurons, the plasmalemmal expression of KCC2, which establishes the low [Cl(-) ]i required for GABAA R-mediated inhibition, is significantly decreased. Interestingly, reductions in inhibition are independent of Glu release, but the presence of both decreased inhibition and decreased SXC expression is required for epileptogenesis. We suggest GABAergic disinhibition renders peritumoral neuronal networks hyper-excitable and susceptible to seizures triggered by excitatory stimuli, and propose KCC2 as a therapeutic target.

Journal ArticleDOI
TL;DR: Expected, no etiology-independent link between the severity of hippocampal interneuron loss and the overall risk of spontaneous seizures was demonstrated and it was found that interneurons responsible for perisomatic inhibition were more vulnerable to TBI than those providing dendritic inhibition.
Abstract: Reduced hippocampal GABAergic inhibition is acknowledged to be associated with epilepsy. However, there are no studies that had quantitatively compared the loss of various interneuron populations in different models of epilepsy. We tested a hypothesis that the more severe the loss of hippocampal interneurons, the more severe was the epilepsy. Epileptogenesis was triggered in adult rats by status epilepticus (SE) (56 SE, 24 controls) or by traumatic brain injury (TBI) (45 TBI, 23 controls). The total number of hippocampal parvalbumin (PARV), cholecystokinin (CCK), calretinin (CR), somatostatin (SOM), or neuropeptide Y (NPY) positive neurons was estimated using unbiased stereology at 1 or 6 months post-insult. The rats with TBI had no spontaneous seizures but showed increased seizure susceptibility. Eleven of the 28 rats (39 %) in the SE group had spontaneous seizures. The most affected hippocampal area after TBI was the ipsilateral dentate gyrus, where 62 % of PARV-immunoreactive (ir) (p < 0.001 compared to controls), 77 % of CR-ir (p < 0.05), 46 % of SOM-ir (p < 0.001), and 59 % of NPY-ir (p < 0.001) cells remained at 1 month after TBI. At 6 months post-TBI, only 35 % of PARV-ir (p < 0.001 compared to controls), 63 % of CCK-ir (p < 0.01), 74 % of CR-ir (p < 0.001), 55 % of SOM-ir (p < 0.001), and 51 % of NPY-ir (p < 0.001) cells were remaining. Moreover, the reduction in PARV-ir, CCK-ir, and CR-ir neurons was bilateral (all p < 0.05). Substantial reductions in different neuronal populations were also found in subfields of the CA3 and CA1. In rats with epilepsy after SE, the number of PARV-ir neurons was reduced in the ipsilateral CA1 (80 % remaining, p < 0.05) and the number of NPY-ir neurons bilaterally in the dentate gyrus (33-37 %, p < 0.01) and the CA3 (54-57 %, p < 0.05). Taken together, interneuron loss was substantially more severe, widespread, progressive, and included more interneuron subclasses after TBI than after SE. Interneurons responsible for perisomatic inhibition were more vulnerable to TBI than those providing dendritic inhibition. Unlike expected, we could not demonstrate any etiology-independent link between the severity of hippocampal interneuron loss and the overall risk of spontaneous seizures.

Journal ArticleDOI
TL;DR: It is demonstrated that a high fat low carbohydrate ketogenic diet prevented disease progression in two mechanistically different models of epilepsy, and an epigenetic mechanism underlying the therapeutic effects is suggested.

Journal ArticleDOI
Na Wang1, Xiujuan Mi1, Baobing Gao1, Juan Gu1, Wei Wang1, Yanke Zhang1, Xia Wang1 
TL;DR: It is demonstrated that minocycline could mitigate SE-induced brain inflammation and might exert disease-modifying effects in an animal model of temporal lobe epilepsy and offer new insights into deciphering the molecular mechanisms of epileptogenesis and exploring a novel therapeutic strategy for prevention of epilepsy.

Journal ArticleDOI
TL;DR: Those miRNAs that are altered in plasma before the first spontaneous seizure, like miR-9a-3p, may be proposed as putative biomarkers of epileptogenesis.
Abstract: The identification of biomarkers of the transformation of normal to epileptic tissue would help to stratify patients at risk of epilepsy following brain injury, and inform new treatment strategies. MicroRNAs (miRNAs) are an attractive option in this direction. In this study, miRNA microarrays were performed on laser-microdissected hippocampal granule cell layer (GCL) and on plasma, at different time points in the development of pilocarpine-induced epilepsy in the rat: latency, first spontaneous seizure and chronic epileptic phase. Sixty-three miRNAs were differentially expressed in the GCL when considering all time points. Three main clusters were identified that separated the control and chronic phase groups from the latency group and from the first spontaneous seizure group. MiRNAs from rats in the chronic phase were compared to those obtained from the laser-microdissected GCL of epileptic patients, identifying several miRNAs (miR-21-5p, miR-23a-5p, miR-146a-5p and miR-181c-5p) that were up-regulated in both human and rat epileptic tissue. Analysis of plasma samples revealed different levels between control and pilocarpine-treated animals for 27 miRNAs. Two main clusters were identified that segregated controls from all other groups. Those miRNAs that are altered in plasma before the first spontaneous seizure, like miR-9a-3p, may be proposed as putative biomarkers of epileptogenesis.

Journal ArticleDOI
TL;DR: Based on the several positive findings in animal models, a strong need for more carefully planned, randomized, double-blind, cross-over, placebo-controlled clinical trials for the evaluation of antioxidants efficacy in patients with epilepsy is warranted.
Abstract: Epilepsy is known as one of the most frequent neurological diseases, characterized by an enduring predisposition to generate epileptic seizures. Oxidative stress is believed to directly participate in pathways leading to neurodegeneration, which serves as the most important propagating factor, leading to the epileptic condition and cognitive decline. Moreover, there is also a growing body of evidence showing the disturbance of antioxidant system balance and consequently increased production of reactive species in patients with epilepsy. A meta-analysis, conducted in the present review confirms an association between epilepsy and increased lipid peroxidation. Furthermore, it was also shown that some of the antiepileptic drugs could potentially be responsible for additionally increased lipid peroxidation. Therefore, it is reasonable to propose that during the epileptic process neuroprotective treatment with antioxidants could lead to less sever structural damages, reduced epileptogenesis and milder cognitive deterioration. To evaluate this hypothesis studies investigating the neuroprotective therapeutic potential of various antioxidants in cells, animal seizure models and patients with epilepsy have been reviewed. Numerous beneficial effects of antioxidants on oxidative stress markers and in some cases also neuroprotective effects were observed in animal seizure models. However, despite these encouraging results, till now only a few antioxidants have been further applied to patients with epilepsy as an add-on therapy. Based on the several positive findings in animal models, a strong need for more carefully planned, randomized, double-blind, cross-over, placebo-controlled clinical trials for the evaluation of antioxidants efficacy in patients with epilepsy is warranted.

Journal ArticleDOI
TL;DR: Whether mTOR inhibition suppresses epileptiform activity and other neuropathological correlates in adult NS‐Pten KO mice with severe and well‐established epilepsy is investigated.
Abstract: SummaryObjective Hyperactivation of the mechanistic target of rapamycin (mTOR; also known as mammalian target of rapamycin) pathway has been demonstrated in human cortical dysplasia (CD) as well as in animal models of epilepsy Although inhibition of mTOR signaling early in epileptogenesis suppressed epileptiform activity in the neuron subset-specific Pten knockout (NS-Pten KO) mouse model of CD, the effects of mTOR inhibition after epilepsy is fully established were not previously examined in this model Here, we investigated whether mTOR inhibition suppresses epileptiform activity and other neuropathological correlates in adult NS-Pten KO mice with severe and well-established epilepsy Methods The progression of epileptiform activity, mTOR pathway dysregulation, and associated neuropathology with age in NS-Pten KO mice were evaluated using video–electroencephalography (EEG) recordings, Western blotting, and immunohistochemistry A cohort of NS-Pten KO mice was treated with the mTOR inhibitor rapamycin (10 mg/kg ip, 5 days/week) starting at postnatal week 9 and video–EEG monitored for epileptiform activity Western blotting and immunohistochemistry were performed to evaluate the effects of rapamycin on the associated pathology Results Epileptiform activity worsened with age in NS-Pten KO mice, with parallel increases in the extent of hippocampal mTOR complex 1 and 2 (mTORC1 and mTORC2, respectively) dysregulation and progressive astrogliosis and microgliosis Rapamycin treatment suppressed epileptiform activity, improved baseline EEG activity, and increased survival in severely epileptic NS-Pten KO mice At the molecular level, rapamycin treatment was associated with a reduction in both mTORC1 and mTORC2 signaling and decreased astrogliosis and microgliosis Significance These findings reveal a wide temporal window for successful therapeutic intervention with rapamycin in the NS-Pten KO mouse model, and they support mTOR inhibition as a candidate therapy for established, late-stage epilepsy associated with CD and genetic dysregulation of the mTOR pathway

Journal ArticleDOI
TL;DR: Research supports strong effects of epigenetics influencing gene expression in epilepsy, suggesting future therapeutic approaches to manipulate epigenetic processes to treat or prevent epilepsy.
Abstract: Epigenetic processes in the brain involve the transfer of information arising from short-lived cellular signals and changes in neuronal activity into lasting effects on gene expression. Key molecular mediators of epigenetics include methylation of DNA, histone modifications, and noncoding RNAs. Emerging findings in animal models and human brain tissue reveal that epilepsy and epileptogenesis are associated with changes to each of these contributors to the epigenome. Understanding and influencing the molecular mechanisms controlling epigenetic change could open new avenues for treatment. DNA methylation, particularly hypermethylation, has been found to increase within gene body regions and interference with DNA methylation in epilepsy can change gene expression profiles and influence epileptogenesis. Posttranscriptional modification of histones, including transient as well as sustained changes to phosphorylation and acetylation, have been reported, which appear to influence gene expression. Finally, roles have emerged for noncoding RNAs in brain excitability and seizure thresholds, including microRNA and long noncoding RNA. Together, research supports strong effects of epigenetics influencing gene expression in epilepsy, suggesting future therapeutic approaches to manipulate epigenetic processes to treat or prevent epilepsy.

Journal ArticleDOI
TL;DR: It is demonstrated that pharmacological removal of reactive oxygen species (ROS) prevents 1) oxidative stress, 2) deficits in mitochondrial oxygen consumption rates, 3) hippocampal neuronal loss and 4) cognitive dysfunction without altering the intensity of the initial status epilepticus or epilepsy development in a rat model of SE-induced TLE.

Journal ArticleDOI
TL;DR: Preclinical data have led to limited use in humans with epilepsy due to tuberous sclerosis complex and polyhydramnios, megalencephaly, and symptomatic epilepsy with promising results, and larger controlled studies are underway using mTOR inhibitors in individuals with tuberousclerosis complex and intractable epilepsy.
Abstract: Despite a large number of available medical options, many individuals with epilepsy are refractory to existing therapies that mainly target neurotransmitter or ion channel activity. A growing body of preclinical data has uncovered a molecular pathway that appears crucial in many genetic and acquired epilepsy syndromes. The mammalian target of rapamycin (mTOR) pathway regulates a number of cellular processes required in the growth, metabolism, structure, and cell-cell interactions of neurons and glia. Rapamycin and similar compounds inhibit mTOR complex 1 and decrease seizures, delay seizure development, or prevent epileptogenesis in many animal models of mTOR hyperactivation. However, the exact mechanisms by which mTOR inhibition drives decreased seizure activity have not been completely determined. Nonetheless, these preclinical data have led to limited use in humans with epilepsy due to tuberous sclerosis complex and polyhydramnios, megalencephaly, and symptomatic epilepsy with promising results. Currently, larger controlled studies are underway using mTOR inhibitors in individuals with tuberous sclerosis complex and intractable epilepsy.

Journal ArticleDOI
01 Feb 2015-Brain
TL;DR: It is shown that eslicarbazepine acetate exhibits maintained use-dependent blocking effects both in human and experimental epilepsy with significant add-on effects to carbamazepine in human epilepsy and also inhibits Cav3.2 T-type Ca(2+) channels, which have been shown to be key mediators of epileptogenesis.
Abstract: In human epilepsy, pharmacoresistance to antiepileptic drug therapy is a major problem affecting a substantial fraction of patients. Many of the currently available antiepileptic drugs target voltage-gated sodium channels, leading to a rate-dependent suppression of neuronal discharge. A loss of use-dependent block has emerged as a potential cellular mechanism of pharmacoresistance for anticonvulsants acting on voltage-gated sodium channels. There is a need both for compounds that overcome this resistance mechanism and for novel drugs that inhibit the process of epileptogenesis. We show that eslicarbazepine acetate, a once-daily antiepileptic drug, may constitute a candidate compound that addresses both issues. Eslicarbazepine acetate is converted extensively to eslicarbazepine after oral administration. We have first tested using patch-clamp recording in human and rat hippocampal slices if eslicarbazepine, the major active metabolite of eslicarbazepine acetate, shows maintained activity in chronically epileptic tissue. We show that eslicarbazepine exhibits maintained use-dependent blocking effects both in human and experimental epilepsy with significant add-on effects to carbamazepine in human epilepsy. Second, we show that eslicarbazepine acetate also inhibits Cav3.2 T-type Ca(2+) channels, which have been shown to be key mediators of epileptogenesis. We then examined if transitory administration of eslicarbazepine acetate (once daily for 6 weeks, 150 mg/kg or 300 mg/kg) after induction of epilepsy in mice has an effect on the development of chronic seizures and neuropathological correlates of chronic epilepsy. We found that eslicarbazepine acetate exhibits strong antiepileptogenic effects in experimental epilepsy. EEG monitoring showed that transitory eslicarbazepine acetate treatment resulted in a significant decrease in seizure activity at the chronic state, 8 weeks after the end of treatment. Moreover, eslicarbazepine acetate treatment resulted in a significant decrease in mossy fibre sprouting into the inner molecular layer of pilocarpine-injected mice, as detected by Timm staining. In addition, epileptic animals treated with 150 mg/kg, but not those that received 300 mg/kg eslicarbazepine acetate showed an attenuated neuronal loss. These results indicate that eslicarbazepine potentially overcomes a cellular resistance mechanism to conventional antiepileptic drugs and at the same time constitutes a potent antiepileptogenic agent.

Journal ArticleDOI
TL;DR: TSPO expression was correlating with spontaneous seizures and its high expression during the latent phase might possibly suggest being an important switching point in disease ontogenesis which could be further investigated by PET imaging.

Journal ArticleDOI
TL;DR: Differences between epileptic effectors, or proteins that set the seizure threshold, and epileptogenic mediators, which control the expression or functional state of the effector proteins are distinguished.
Abstract: Epilepsy is a prevalent neurological disorder afflicting nearly 50 million people worldwide. The disorder is characterized clinically by recurrent spontaneous seizures attributed to abnormal synchrony of brain neurons. Despite advances in the treatment of epilepsy, nearly one-third of patients are resistant to current therapies, and the underlying mechanisms whereby a healthy brain becomes epileptic remain unresolved. Therefore, researchers have a major impetus to identify and exploit new drug targets. Here we distinguish between epileptic effectors, or proteins that set the seizure threshold, and epileptogenic mediators, which control the expression or functional state of the effector proteins. Under this framework, we then discuss attempts to regulate the mediators to control epilepsy. Further insights into the complex processes that render the brain susceptible to seizures and the identification of novel mediators of these processes will lead the way to the development of drugs to modify disease outcom...

Journal ArticleDOI
TL;DR: Pilocarpine-induced status epilepticus causes a rapid increase of multiple cytokines in limbic and neocortical regions, and understanding the precise spatial and temporal pattern of cytokines and chemokine changes could provide more viable therapeutic targets to reduce, reverse, or prevent the development of epilepsy following a precipitating injury.
Abstract: Background Cytokines and chemokines play an important role in the neuroinflammatory response to an initial precipitating injury such as status epilepticus (SE). These signaling molecules participate in recruitment of immune cells, including brain macrophages (microglia), as well as neuroplastic changes, deterioration of damaged tissue, and epileptogenesis. This study describes the temporal and brain region pattern expression of numerous cytokines, including chemokines, after pilocarpine-induced seizures and discusses them in the larger context of their potential involvement in the changes that precede the development of epilepsy.

Journal ArticleDOI
TL;DR: This review, based on recent data from both animal models and patients with different types of brain injury, proposes that epileptogenesis and often subclinical epilepsy can start immediately after brain injury without any appreciable latent period.

Journal ArticleDOI
TL;DR: The drug cocktail, consisting of diazepam, phenobarbital, and scopolamine that allows complete and persistent SE termination in the lithium-pilocarpine model demonstrates that the duration of SE needed for induction of epileptogenesis in this model is longer than previously thought.

Journal ArticleDOI
TL;DR: It is shown that social defeat, although not producing depression by itself, produced in 50% of rats reduced threshold for status epilepticus, accelerated epileptogenesis, and once epilepsy was induced, depression‐like profile and cognitive deficits, and low serum brain‐derived neurotrophic factor levels measured before SE identified this vulnerable population.
Abstract: Accumulation of stressful events can render individuals susceptible to develop epilepsy and comorbidities. Whether such vulnerability can be predicted and reversed is not known. Here we show that social defeat, although not producing depression by itself, produced in 50% of rats reduced threshold for status epilepticus (SE), accelerated epileptogenesis, and once epilepsy was induced, depression-like profile and cognitive deficits. Low serum brain-derived neurotrophic factor (BDNF) levels measured before SE identified this vulnerable population. Treatment with a BDNF analog before SE prevented the occurrence of comorbidities. Thus, vulnerability to comorbidities after epilepsy onset due to unresolved past stressful events may be predicted and reversed.

Journal ArticleDOI
TL;DR: Investigation of gene expression changes in the hippocampal dentate gyrus shortly after prolonged seizures induced by kainic acid focuses on mitochondrial functions, identifying BCL2L13 as a novel target of the cooperative action of micro RNA-124 and microRNA-137, both upregulated shortly after seizure induction.
Abstract: Adult neurogenesis continuously contributes new neurons to hippocampal circuits and the programmed death of a subset of immature cells provides a primary mechanism controlling this contribution. Epileptic seizures induce strong structural changes in the hippocampus, including the induction of adult neurogenesis, changes in gene expression and mitochondrial dysfunction, which may all contribute to epileptogenesis. However, a possible interplay between this factors remains largely unexplored. Here, we investigated gene expression changes in the hippocampal dentate gyrus shortly after prolonged seizures induced by kainic acid, focusing on mitochondrial functions. Using comparative proteomics, we identified networks of proteins differentially expressed shortly after seizure induction, including members of the BCL2 family and other mitochondrial proteins. Within these networks, we report for the first time that the atypical BCL2 protein BCL2L13 controls caspase-3 activity and cytochrome C release in neural stem/progenitor cells. Furthermore, we identify BCL2L13 as a novel target of the cooperative action of microRNA-124 and microRNA-137, both upregulated shortly after seizure induction. This cooperative microRNA-mediated fine-tuning of BCL2L13 expression controls casp3 activity, favoring non-apoptotic caspase-3 functions in NSPC exposed to KA and thereby may contribute to the early neurogenic response to epileptic seizures in the dentate gyrus.

Journal ArticleDOI
01 Sep 2015
TL;DR: Findings suggest that some components of the inflammatory gene network might contribute to the process by which insults promote the development of temporal lobe epilepsy.
Abstract: Epilepsy is a common neurological disorder with many causes. For temporal lobe epilepsy, antecedent insults are typically found. These risk factors include trauma or history of long fever-associated seizures (febrile status epilepticus) in childhood. Whereas the mechanisms by which such insults promote temporal lobe epilepsy are unknown, an extensive body of work has implicated inflammation and inflammatory mediators in both human and animal models of the disorder. However, direct evidence for an epileptogenic role for inflammation is lacking. Here we capitalized on a model where only a subgroup of insult-experiencing rodents develops epilepsy. We reasoned that if inflammation was important for generating epilepsy, then early inflammation should be more prominent in individuals destined to become epileptic compared with those that will not become epileptic. In addition, the molecular and temporal profile of inflammatory mediators would provide insights into which inflammatory pathways might be involved in the disease process. We examined inflammatory profiles in hippocampus and amygdala of individual rats and correlated them with a concurrent noninvasive, amygdalar magnetic resonance imaging epilepsy-predictive marker. We found significant individual variability in the expression of several important inflammatory mediators, but not in others. Of interest, a higher expression of a subset of hippocampal and amygdalar inflammatory markers within the first few hours following an insult correlated with the epilepsy-predictive signal. These findings suggest that some components of the inflammatory gene network might contribute to the process by which insults promote the development of temporal lobe epilepsy.