scispace - formally typeset
Search or ask a question
Topic

Epileptogenesis

About: Epileptogenesis is a research topic. Over the lifetime, 4218 publications have been published within this topic receiving 170809 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Regulation of semaphorin gene expression after KA‐induced SE suggests that neurons may regulate the expression of axonal guidance molecules and thereby contribute to synaptic reorganization after injury of the mature brain.
Abstract: Mossy fiber sprouting and other forms of synaptic reorganization may form the basis for a recurrent excitatory network in epileptic foci. Four major classes of axon guidance molecules--the ephrins, netrins, slits, and semaphorins--provide targeting information to outgrowing axons along predetermined pathways during development. These molecules may also play a role in synaptic reorganization in the adult brain and thereby promote epileptogenesis. We studied semaphorin gene expression, as assessed by in situ hybridization, using riboprobes generated from rat cDNA in an adult model of synaptic reorganization, kainic acid (KA)-induced status epilepticus (SE). Within the first week after KA-induced SE, semaphorin 3C, a class III semaphorin, mRNA content is decreased in the CA1 area of the hippocampus and is increased in the upper layers of cerebral cortex. Another class III semaphorin, semaphorin 3F, is also decreased in CA1 and CA3 of hippocampus within the first week after KA-SE. These changes in gene expression are principally confined to neurons. By contrast, there was little change in the semaphorin 4C mRNA content of CA1 neurons at this time. No changes in expression of semaphorin 3A and 4C genes were detected 28 days after KA-induced SE. Regulation of semaphorin gene expression after KA-induced SE suggests that neurons may regulate the expression of axonal guidance molecules and thereby contribute to synaptic reorganization after injury of the mature brain. The anatomic locale of the altered semaphorin gene expression may serve as a marker for specific networks undergoing synaptic reorganization in the epileptic brain.

82 citations

Journal ArticleDOI
TL;DR: The results suggest that biochemical and/or morphological changes occurring in dentate granule cells and somatostatin interneurons after seizures may be regulated by immediate-early gene expression, and that these immediate- early gene proteins may be involved in seizure development in the nervous system.

82 citations

Journal ArticleDOI
TL;DR: The present data support the hypothesis that CD shares features of immature cortex, with predominant and potentially excitatory GABAA receptor‐mediated neurotransmission, and could partially explain the increased excitability of the cortical network in pediatric CD.
Abstract: Cortical dysplasia (CD), a frequent pathological substrate of pediatric epilepsy surgery patients, has a number of similarities with immature cortex, such as reduced Mg2+ sensitivity of N-methyl-D-aspartate (NMDA) receptors and the persistence of subplate-like neurons and undifferentiated cells. Because gamma-aminobutyric acid (GABA) is the main neurotransmitter in early cortical development, we hypothesized increased GABA receptor-mediated synaptic function in CD tissue. Infrared videomicroscopy and whole-cell patch clamp recordings were used to characterize the morphology and electrophysiological properties of immature and normal-appearing neurons in slices from cortical tissue samples resected for the treatment of pharmacoresistant epilepsy in children (0.2-14 years). In addition, we examined spontaneous and evoked synaptic activity, as well as responses to exogenous GABA application. We demonstrate both the presence of immature pyramidal neurons and networks in young CD tissue and the predominance of GABA synaptic activity. In addition, spontaneous GABA depolarizations frequently induced action potentials, supporting a potential excitatory role of GABA in CD. Evoked synaptic responses mediated by GABA were also prominent, and bath application of 4-aminopyridine induced rhythmic depolarizations that were blocked by bicuculline. Finally, responses to exogenous application of GABA had depolarized reversal potentials in severe compared to mild and non-CD cases. The present data support the hypothesis that CD shares features of immature cortex, with predominant and potentially excitatory GABA(A) receptor-mediated neurotransmission. These results could partially explain the increased excitability of the cortical network in pediatric CD.

82 citations

Journal ArticleDOI
TL;DR: Results demonstrate the estrous cycle–related plasticity of neurosteroid-sensitive, δ-containing GABAA receptors that mediate tonic inhibition and seizure susceptibility in mice during diestrus.
Abstract: The ovarian cycle affects susceptibility to behavioral and neurologic conditions. The molecular mechanisms underlying these changes are poorly understood. Deficits in cyclical fluctuations in steroid hormones and receptor plasticity play a central role in physiologic and pathophysiologic menstrual conditions. It has been suggested that synaptic GABAA receptors mediate phasic inhibition in the hippocampus and extrasynaptic receptors mediate tonic inhibition in the dentate gyrus. Here we report a novel role of extrasynaptic δ-containing GABAA receptors as crucial mediators of the estrous cycle–related changes in neuronal excitability in mice, with hippocampus subfield specificity. In molecular and immunofluorescence studies, a significant increase occurred in δ-subunit, but not α4- and γ2-subunits, in the dentate gyrus during diestrus. However, δ-subunit upregulation was not evident in the CA1 region. The δ-subunit expression was undiminished by age and ovariectomy and in mice lacking progesterone receptors, but it was significantly reduced by finasteride, a neurosteroid synthesis inhibitor. Electrophysiologic studies confirmed greater potentiation of GABA currents by progesterone-derived neurosteroid allopregnanolone in dissociated dentate gyrus granule cells in diestrus than in CA1 pyramidal cells. The baseline conductance and allopregnanolone potentiation of tonic currents in dentate granule cells from hippocampal slices were higher than in CA1 pyramidal cells. In behavioral studies, susceptibility to hippocampus kindling epileptogenesis was lower in mice during diestrus. These results demonstrate the estrous cycle–related plasticity of neurosteroid-sensitive, δ-containing GABAA receptors that mediate tonic inhibition and seizure susceptibility. These findings may provide novel insight on molecular cascades of menstrual disorders like catamenial epilepsy, premenstrual syndrome, and migraine.

82 citations

Journal ArticleDOI
07 Jan 2013-PLOS ONE
TL;DR: The large number of microRNAs with altered expression following status epilepticus suggests that microRNA regulation of translation has the potential to contribute to changes in protein expression during epileptogenesis.
Abstract: MicroRNAs regulate protein synthesis by binding non-translated regions of mRNAs and suppressing translation and/or increasing mRNA degradation. MicroRNAs play an important role in the nervous system including controlling synaptic plasticity. Their expression is altered in disease states including stroke, head injury and epilepsy. To better understand microRNA expression changes that might contribute to the development of epilepsy, microRNA arrays were performed on rat hippocampus 4 hours, 48 hours and 3 weeks following an episode of pilocarpine induced status epilepticus. Eighty microRNAs increased at one or more of the time points. No microRNAs decreased at 4 hours, and only a few decreased at 3 weeks, but 188 decreased 48 hours after status epilepticus. The large number of microRNAs with altered expression following status epilepticus suggests that microRNA regulation of translation has the potential to contribute to changes in protein expression during epileptogenesis. We carried out a second set of array’s comparing microRNA expression at 48 hours in synaptoneurosome and nuclear fractions of the hippocampus. In control rat hippocampi multiple microRNAs were enriched in the synaptoneurosomal fraction as compared to the nuclear fraction. In contrast, 48 hours after status epilepticus only one microRNA was enriched in the synaptoneurosome fraction. The loss of microRNAs enriched in the synaptoneurosomal fraction implies a dramatic change in translational regulation in synapses 48 hours after status epilepticus.

82 citations


Network Information
Related Topics (5)
Epilepsy
62.7K papers, 1.7M citations
91% related
Hippocampal formation
30.6K papers, 1.7M citations
89% related
Hippocampus
34.9K papers, 1.9M citations
88% related
Dopaminergic
29K papers, 1.4M citations
88% related
Glutamate receptor
33.5K papers, 1.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023181
2022348
2021245
2020219
2019210
2018209