scispace - formally typeset
Search or ask a question
Topic

Epileptogenesis

About: Epileptogenesis is a research topic. Over the lifetime, 4218 publications have been published within this topic receiving 170809 citations.


Papers
More filters
Book ChapterDOI
TL;DR: Findings from stereological electron microscopy and rapamycin-delayed mossy fiber sprouting in rodent models of temporal lobe epilepsy suggest a persistent, homeostatic mechanism exists to maintain a set level of excitatory synaptic input to granule cells.
Abstract: Many patients with temporal lobe epilepsy display structural changes in the seizure initiating zone, which includes the hippocampus. Structural changes in the hippocampus include granule cell axon (mossy fiber) sprouting. The role of mossy fiber sprouting in epileptogenesis is controversial. A popular view of temporal lobe epileptogenesis contends that precipitating brain insults trigger transient cascades of molecular and cellular events that permanently enhance excitability of neuronal networks through mechanisms including mossy fiber sprouting. However, recent evidence suggests there is no critical period for mossy fiber sprouting after an epileptogenic brain injury. Instead, findings from stereological electron microscopy and rapamycin-delayed mossy fiber sprouting in rodent models of temporal lobe epilepsy suggest a persistent, homeostatic mechanism exists to maintain a set level of excitatory synaptic input to granule cells. If so, a target level of mossy fiber sprouting might be determined shortly after a brain injury and then remain constant. Despite the static appearance of synaptic reorganization after its development, work by other investigators suggests there might be continual turnover of sprouted mossy fibers in epileptic patients and animal models. If so, there may be opportunities to reverse established mossy fiber sprouting. However, reversal of mossy fiber sprouting is unlikely to be antiepileptogenic, because blocking its development does not reduce seizure frequency in pilocarpine-treated mice. The challenge remains to identify which, if any, of the many other structural changes in the hippocampus are epileptogenic.

77 citations

Journal Article
TL;DR: There is increasing evidence from research and clinical observation that VNS might establish a true and long-term anti-epileptic effect and neurophysiological techniques such as evoked potentials monitoring and intraoperative single unit potential recordings may guide correct electrode placement, individual DBS titration and elucidation of the mechanims of action of DBS for epilepsy.
Abstract: Neurostimulation is an emerging treatment for refractory epilepsy. To date the precise mechanism of action remains to be elucidated. Better insight in the mechanism of action may identify seizure types or syndromes that respond to such a treatment and may guide the search for optimal stimulation parameters and finally improve clinical efficacy. In the past ten years some progress has been made through neurophysiological, neuroanatomical, neurochemical and cerebral blood flow studies in patients and animals undergoing vagus nerve stimulation (VNS). Interesting results have been found in VNS-treated patients that underwent evoked potential measurements, cerebrospinal fluid investigation, neuropsychological testing and PET, SPECT and fMRI testing. Desynchronisation of abnormal synchronous epileptic activity is one of the hypotheses on the mode of action that might primarily be responsible for an anti-seizure effect. There is however increasing evidence from research and clinical observation that VNS might establish a true and long-term anti-epileptic effect. It has been shown that VNS influences neurotransmission in the brain and provokes long-term changes in cerebral blood flow in areas crucial for epileptogenesis such as the thalamus and medial temporal lobe structures. Deep brain stimulation (DBS) for epilepsy has regained interest. Central nervous system structures known to play a key role in the epileptogenic network such as the thalamus and subthalamic nucleus have been targeted. Another approach is to target the ictal onset zone such as the medial temporal lobe. At Ghent University Hospital 10 patients have been treated with long-term amygdalohippocampal DBS. Several hypotheses have been raised for the mechanism of action of DBS for refractory seizures. Seizure reduction may be due to a microlesion caused by electrode insertion or by provoking a reversible functional lesion due to the effect of electrical current on hyperexcitable tissue. Neurophysiological techniques such as evoked potentials monitoring and intraoperative single unit potential recordings may guide correct electrode placement, individual DBS titration and elucidation of the mechanims of action of DBS for epilepsy.

77 citations

Journal ArticleDOI
TL;DR: A time- and structure-dependent imbalance of glutamatergic transmission in response to Pilo-SE is suggested, which might be associated with either epileptogenesis or the seizure threshold in MTLE-HS.
Abstract: The pilocarpine model in rodents reproduces the main features of mesial temporal lobe epilepsy related to hippocampus sclerosis (MTLE-HS) in humans. It has been demonstrated in this model that the phosphorylation of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR1 subunit is increased 1 h after pilocarpine treatment. Moreover, alterations in the levels of glutamate transporters have been associated with chronic epilepsy in humans. Despite these studies, the profile of these changes has not yet been addressed. We analyzed the protein content and phosphorylation profile of the AMPA receptor GluR1 subunit by western blotting. We also used quantitative real-time polymerase chain reaction to analyze the expression of glial glutamate transporters and the N-methyl-D-aspartate receptor NR1 subunit in the hippocampus (Hip) and cerebral cortex (Ctx) at different time points after pilocarpine-induced status epilepticus (Pilo-SE) in male adult Wistar rats. Biochemical analysis was performed in the Hip and Ctx at 1, 3, 12 h (acute period), 5 days (latent period), and 50 days (chronic period) after Pilo-SE. Key findings include an increase in the phosphorylation of GluR1-Ser(845) in the Ctx and GluR1-Ser(831) in the Hip at different times during the acute period, and a decrease in the total content of the GluR1 subunit in the Ctx in the latent period. There was a down-regulation of the mRNA expression and protein levels of EAAT1 and EAAT2, and a decrease of the NR1 mRNA expression, in the Ctx during the latent period. Notably, during the chronic period, the EAAT2 mRNA expression and protein levels decreased while the NR1 mRNA levels increased in the Hip. Taken together, our findings suggest a time- and structure-dependent imbalance of glutamatergic transmission in response to Pilo-SE, which might be associated with either epileptogenesis or the seizure threshold in MTLE-HS.

76 citations

Journal ArticleDOI
TL;DR: It is shown that mice with decreased CREB levels (CREB(α∆) mutants) have a ~50% reduction in spontaneous seizures following pilocarpine induced status epilepticus (SE) and require more stimulation to electrically kindle.

76 citations

Journal ArticleDOI
TL;DR: There is emerging evidence that endogenous neurosteroids may play a key role in the pathophysiology of catamenial epilepsy, stress–sensitive seizure conditions, temporal lobe epilepsy, and alcohol-withdrawal seizures.
Abstract: This review highlights the role of major endogenous neurosteroids in seizure disorders and the promise of neurosteroid replacement therapy in epilepsy. Neurosteroids are endogenous modulators of seizure susceptibility. Neurosteroids such as allopregnanolone (3a-hydroxy-5a-pregnane-20-one) and allotetrahydrodeoxycorticosterone (3a,21-dihydroxy-5a-pregnan-20-one) are positive modulators of GABA-A receptors. Aside from peripheral tissues, neurosteroids are synthesized within the brain, mostly in principal neurons. Neurosteroids potentiate synaptic GABA-A receptor function and also activate delta-subunit-containing extrasynaptic GABA-A receptors that mediate tonic currents and thus may play an important role in neuronal network excitability and seizure susceptibility. Our studies over the past decade have shown that neurosteroids are broad-spectrum anticonvulsants and confer seizure protection in various animal models. They protect against seizures induced by GABA-A receptor antagonists, 6-Hz model, pilocarpine-induced limbic seizures and seizures in kindled animals. Unlike benzodiazepines, tolerance does not occur to their actions during chronic administration. Our recent studies provide compelling evidence that neurosteroids may have antiepileptogenic properties. There is emerging evidence that endogenous neurosteroids may play a key role in the pathophysiology of catamenial epilepsy, stress-sensitive seizure conditions, temporal lobe epilepsy, and alcohol-withdrawal seizures. It is suggested that neurosteroid replacement with natural or synthetic neurosteroids may be useful in the treatment of epilepsy. Synthetic analogs of neurosteroids that are devoid of hormonal side effects show promise in the treatment of diverse seizure disorders. Agents that stimulate endogenous production of neurosteroids may also be useful for treatment of epilepsy.

76 citations


Network Information
Related Topics (5)
Epilepsy
62.7K papers, 1.7M citations
91% related
Hippocampal formation
30.6K papers, 1.7M citations
89% related
Hippocampus
34.9K papers, 1.9M citations
88% related
Dopaminergic
29K papers, 1.4M citations
88% related
Glutamate receptor
33.5K papers, 1.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023181
2022348
2021245
2020219
2019210
2018209