scispace - formally typeset
Search or ask a question
Topic

Epileptogenesis

About: Epileptogenesis is a research topic. Over the lifetime, 4218 publications have been published within this topic receiving 170809 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: TSPO expression was correlating with spontaneous seizures and its high expression during the latent phase might possibly suggest being an important switching point in disease ontogenesis which could be further investigated by PET imaging.

72 citations

Journal ArticleDOI
TL;DR: A novel model of focal, cortical epilepsy is described and a significant correlation was found between infusion time and duration of the excitability rebound, with the longer duration corresponding to the shorter infusion time.

72 citations

Journal ArticleDOI
TL;DR: The data suggest that at the early stage of amyloid pathology, cortical principal cells become hyperexcitable and via extensive cortico-thalamic connection drive thalamic cells.
Abstract: Amyloid precursor protein transgenic mice modeling Alzheimer's disease display frequent occurrence of seizures peaking at an age when amyloid plaques start to form in the cortex and hippocampus. We tested the hypothesis that numerous reported interactions of amyloid-β with cell surface molecules result in altered excitation-inhibition balance in brain-wide neural networks, eventually leading to epileptogenesis. We examined electroencephalograms (EEGs) and auditory-evoked potentials (AEPs) in freely moving 4-month-old APPswe/PS1dE9 (APdE9) and wild-type (WT) control mice in the hippocampus, cerebral cortex, and thalamus during movement, quiet waking, non-rapid eye movement sleep, and rapid eye movement (REM) sleep. Cortical EEG power was higher in APdE9 mice than in WT mice over a broad frequency range (5-100 Hz) and during all 4 behavioral states. Thalamic EEG power was also increased but in a narrower range (10-80 Hz). Furthermore, APdE9 mice displayed augmented cortical and thalamic AEPs. While power and theta-gamma modulation were preserved in the APdE9 hippocampus, REM sleep-related phase shift of theta-gamma modulation was altered. Our data suggest that at the early stage of amyloid pathology, cortical principal cells become hyperexcitable and via extensive cortico-thalamic connection drive thalamic cells. Minor hippocampal changes are most likely secondary to abnormal entorhinal input.

72 citations

Journal ArticleDOI
TL;DR: The role of astrocyte-related processes in epileptogenesis, including reactive astrogliosis, disturbances in energy supply and metabolism, gliotransmission, and extracellular ion concentrations, as well as blood-brain barrier dysfunction and dysregulation of blood flow are discussed.
Abstract: Astrocytes are key homeostatic regulators in the central nervous system and play important roles in physiology. After brain damage caused by e.g., status epilepticus, traumatic brain injury, or stroke, astrocytes may adopt a reactive phenotype. This process of reactive astrogliosis is important to restore brain homeostasis. However, persistent reactive astrogliosis can be detrimental for the brain and contributes to the development of epilepsy. In this review, we will focus on physiological functions of astrocytes in the normal brain as well as pathophysiological functions in the epileptogenic brain, with a focus on acquired epilepsy. We will discuss the role of astrocyte-related processes in epileptogenesis, including reactive astrogliosis, disturbances in energy supply and metabolism, gliotransmission, and extracellular ion concentrations, as well as blood-brain barrier dysfunction and dysregulation of blood flow. Since dysfunction of astrocytes can contribute to epilepsy, we will also discuss their role as potential targets for new therapeutic strategies.

71 citations

Journal ArticleDOI
TL;DR: How microRNAs determine and control neuronal and glial functions, how this process is altered in states associated with hyperexcitability, and the prospects for microRNA targeting for the treatment of epilepsy are discussed.
Abstract: Seizures result from hypersynchronous, abnormal firing of neuronal populations and are the primary clinical symptom of the epilepsies. Brain tissue from animal models and patients with acquired forms of epilepsy commonly features selective neuronal loss, gliosis, inflammatory markers and microscopic and macroscopic reorganization of networks. The gene expression landscape is a critical driver of these changes, and gene expression is fine tuned by small, non-coding RNAs called microRNAs (miRNAs). miRNAs inhibit the function of protein-coding transcripts, resulting in changes in multiple aspects of cell structure and function, including axonal and dendritic structure and the repertoire of neurotransmitter receptors, ion channels and transporters that establish neurophysiological functions. Dysregulation of the miRNA system has emerged as a mechanism that underlies epileptogenesis. Given that miRNAs can act on multiple mRNA targets, their manipulation offers a novel, multi-targeting approach to correct disturbed gene expression patterns. Targeting of some miRNAs has also been used to selectively upregulate individual transcripts, offering the possibility of precision therapy approaches for disorders of haploinsufficiency. In this Review, we discuss how miRNAs determine and control neuronal and glial functions, how this process is altered in states associated with hyperexcitability, and the prospects for miRNA targeting for the treatment of epilepsy.

71 citations


Network Information
Related Topics (5)
Epilepsy
62.7K papers, 1.7M citations
91% related
Hippocampal formation
30.6K papers, 1.7M citations
89% related
Hippocampus
34.9K papers, 1.9M citations
88% related
Dopaminergic
29K papers, 1.4M citations
88% related
Glutamate receptor
33.5K papers, 1.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023181
2022348
2021245
2020219
2019210
2018209