scispace - formally typeset
Search or ask a question
Topic

Epileptogenesis

About: Epileptogenesis is a research topic. Over the lifetime, 4218 publications have been published within this topic receiving 170809 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The main finding of this study was that 5/10 (50%) lesioned animals developed focal epileptic seizures ipsilateral to the cortical infarct characterized by rhythmic spike-wave discharges with or without behavioral change.

61 citations

Journal ArticleDOI
TL;DR: Administration of antioxidants to animals causes interruption of the sequence of brain injury responses induced by hemorrhage, suggesting that such a strategy needs to be evaluated in patients with traumatic brain injury.
Abstract: Traumatic brain injury causes development of posttraumatic epilepsy. Bleeding within neuropil is followed by hemolysis and deposition of hemoglobin in neocortex. Iron from hemoglobin and transferring is deposited in brains of patients with posttraumatic epilepsy. Iron compounds form reactive free radical oxidants. Microinjection of ferric ions into rodent brain results in chronic recurrent seizures and liberation of glutamate into the neuropil, as is observed in humans with epilepsy. Termination of synaptic effects of glutamate is by removal via transporter proteins. EAAC-1 is within neurons while GLT-1 and GLAST are confined to glia. Persistent down regulation of GLAST production is present in hippocampal regions in chronic seizure models. Down regulation of GLAST may be fundamental to a sequence of free radical reactions initiated by brain injury with hemorrhage. Administration of antioxidants to animals causes interruption of the sequence of brain injury responses induced by hemorrhage, suggesting that such a strategy needs to be evaluated in patients with traumatic brain injury.

61 citations

Journal ArticleDOI
TL;DR: Clinical features and management of seizures in patients with brain tumors, including, neuroglial tumors, gliomas, meningioma and metastases, are discussed with the help of recent literature data.
Abstract: Seizures are among the most common presentations of brain tumors. Several tumor types can cause seizures in varying rates; neuroglial tumors and the gliomas are the most common ones. Brain tumors are the second most common cause of focal intractable epilepsy in epilepsy surgery series, with the highest frequency being dysembryoplastic neuroepithelial tumors and gangliogliomas. Seizure management is an important part of the treatment of patients with brain tumors. This review discusses clinical features and management of seizures in patients with brain tumors, including, neuroglial tumors, gliomas, meningioma and metastases; with the help of recent literature data. Tumor-related seizures are focal seizures with or without secondary generalization. Seizures may occur either as initial symptom or during the course of the disease. Brain tumors related epilepsy tends to be resistant to antiepileptic drugs and treatment of tumor is main step also for the seizure treatment. Early surgery and extent of the tumor removal are important factors for achieving seizure freedom particularly in neuroglial tumors and low grade gliomas. During selection of the appropriate antiepileptic drug, the general approach to partial epilepsies can be followed. There are several factors influencing epileptogenesis in brain tumor-related epilepsy which also explains clinical heterogeneity of epilepsy among tumor types. Identification of molecular markers may guide future therapeutic approaches and further studies are needed to prove antitumor effects of different antiepileptic drugs.

61 citations

Journal ArticleDOI
02 Jun 2009-PLOS ONE
TL;DR: It is reported for the first time that pilocarpine injected rats without developing SE, can experience SRS after a long latency period resembling human pathology, and whether acute neurodegeneration is mandatory to obtain chronic epilepsy.
Abstract: Pilocarpine-induced seizures in rats provide a widely animal model of temporal lobe epilepsy. Some evidences reported in the literature suggest that at least 1 h of status epilepticus (SE) is required to produce subsequent chronic phase, due to the SE-related acute neuronal damage. However, recent data seems to indicate that neuro-inflammation plays a crucial role in epileptogenesis, modulating secondarily a neuronal insult. For this reason, we decided to test the following hypotheses: a) whether pilocarpine-injected rats that did not develop SE can exhibit long-term chronic spontaneous recurrent seizures (SRS) and b) whether acute neurodegeneration is mandatory to obtain chronic epilepsy. Therefore, we compared animals injected with the same dose of pilocarpine that developed or did not SE, and saline treated rats. We used telemetric acquisition of EEG as long-term monitoring system to evaluate the occurrence of seizures in non-SE pilocarpineinjected animals. Furthermore, histology and MRI analysis were applied in order to detect neuronal injury and neuropathological signs. Our observations indicate that non-SE rats exhibit SRS almost 8 (+/22) months after pilocarpine-injection, independently to the absence of initial acute neuronal injury. This is the first time reported that pilocarpine injected rats without developing SE, can experience SRS after a long latency period resembling human pathology. Thus, we strongly emphasize the important meaning of including these animals to model human epileptogenesis in pilocarpine induced epilepsy.

61 citations

Journal ArticleDOI
TL;DR: It is demonstrated that specific and sustained inhibition of GABA release from parvalbumin-expressing interneurons in sector CA1/subiculum is sufficient to induce hyperexcitability and spontaneous recurrent seizures in mice and identifies a potential mechanism in the development of TLE.
Abstract: Temporal lobe epilepsy (TLE) is the most frequent form of focal epilepsies and is generally associated with malfunctioning of the hippocampal formation. Recently, a preferential loss of parvalbumin (PV) neurons has been observed in the subiculum of TLE patients and in animal models of TLE. To demonstrate a possible causative role of defunct PV neurons in the generation of TLE, we permanently inhibited GABA release selectively from PV neurons of the ventral subiculum by injecting a viral vector expressing tetanus toxin light chain in male mice. Subsequently, mice were subjected to telemetric EEG recording and video monitoring. Eighty-eight percent of the mice presented clusters of spike-wave discharges (C-SWDs; 40.0 ± 9.07/month), and 64% showed spontaneous recurrent seizures (SRSs; 5.3 ± 0.83/month). Mice injected with a control vector presented with neither C-SWDs nor SRSs. No neurodegeneration was observed due to vector injection or SRS. Interestingly, mice that presented with only C-SWDs but no SRSs, developed SRSs upon injection of a subconvulsive dose of pentylenetetrazole after 6 weeks. The initial frequency of SRSs declined by ∼30% after 5 weeks. In contrast to permanent silencing of PV neurons, transient inhibition of GABA release from PV neurons through the designer receptor hM4Di selectively expressed in PV-containing neurons transiently reduced the seizure threshold of the mice but induced neither acute nor recurrent seizures. Our data demonstrate a critical role for perisomatic inhibition mediated by PV-containing interneurons, suggesting that their sustained silencing could be causally involved in the development of TLE.SIGNIFICANCE STATEMENT Development of temporal lobe epilepsy (TLE) generally takes years after an initial insult during which maladaptation of hippocampal circuitries takes place. In human TLE and in animal models of TLE, parvalbumin neurons are selectively lost in the subiculum, the major output area of the hippocampus. The present experiments demonstrate that specific and sustained inhibition of GABA release from parvalbumin-expressing interneurons (mostly basket cells) in sector CA1/subiculum is sufficient to induce hyperexcitability and spontaneous recurrent seizures in mice. As in patients with nonlesional TLE, these mice developed epilepsy without signs of neurodegeneration. The experiments highlight the importance of the potent inhibitory action mediated by parvalbumin cells in the hippocampus and identify a potential mechanism in the development of TLE.

61 citations


Network Information
Related Topics (5)
Epilepsy
62.7K papers, 1.7M citations
91% related
Hippocampal formation
30.6K papers, 1.7M citations
89% related
Hippocampus
34.9K papers, 1.9M citations
88% related
Dopaminergic
29K papers, 1.4M citations
88% related
Glutamate receptor
33.5K papers, 1.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023181
2022348
2021245
2020219
2019210
2018209