scispace - formally typeset
Search or ask a question
Topic

Epileptogenesis

About: Epileptogenesis is a research topic. Over the lifetime, 4218 publications have been published within this topic receiving 170809 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The current knowledge on mechanisms supposed to be involved in epileptogenesis, as well as on the possible innovative treatments that may lead to a preventive approach to TLE are addressed.
Abstract: Temporal lobe epilepsy (TLE) is frequently associated with hippocampal sclerosis, possibly caused by a primary brain injury that occurred a long time before the appearance of neurological symptoms. This type of epilepsy is characterized by refractoriness to drug treatment, so to require surgical resection of mesial temporal regions involved in seizure onset. Even this last therapeutic approach may fail in giving relief to patients. Although prevention of hippocampal damage and epileptogenesis after a primary event could be a key innovative approach to TLE, the lack of clear data on the pathophysiological mechanisms leading to TLE does not allow any rational therapy. Here we address the current knowledge on mechanisms supposed to be involved in epileptogenesis, as well as on the possible innovative treatments that may lead to a preventive approach. Besides loss of principal neurons and of specific interneurons, network rearrangement caused by axonal sprouting and neurogenesis are well known phenomena that are integrated by changes in receptor and channel functioning and modifications in other cellular components. In particular, a growing body of evidence from the study of animal models suggests that disruption of vascular and astrocytic components of the blood-brain barrier takes place in injured brain regions such as the hippocampus and piriform cortex. These events may be counteracted by drugs able to prevent damage to the vascular component, as in the case of the growth hormone secretagogue ghrelin and its analogues. A thoroughly investigation on these new pharmacological tools may lead to design effective preventive therapies.

177 citations

Journal ArticleDOI
TL;DR: The study of dynamic changes in neural activity preceding epileptic seizure allows the characterization of a preictal state several minutes before seizure onset, which opens up new perspectives for studying the mechanisms of epileptogenesis and for possible therapeutic interventions.
Abstract: The study of dynamic changes in neural activity preceding epileptic seizure allows the characterization of a preictal state several minutes before seizure onset. This opens up new perspectives for studying the mechanisms of epileptogenesis as well as for possible therapeutic interventions, which represent a major breakthrough. In this review the authors present and discuss the results from their group in this domain using nonlinear analysis of brain signals, as well as the limitations of this topic and current questions.

177 citations

Journal ArticleDOI
TL;DR: The knowledge of the role of the ion channels in the epilepsies is allowing the design of new and more specific therapeutic strategies.
Abstract: The role of voltage-gated and ligand-gated ion channels in epileptogenesis of both genetic and acquired epilepsies, and as targets in the development of new antiepileptic drugs (AEDs) is reviewed. Voltage-gated Na+ channels are essential for action potentials, and their mutations are the substrate for generalised epilepsy with febrile seizures plus and benign familial neonatal infantile seizures; Na+ channel inhibition is the primary mechanism of carbamazepine, phenytoin and lamotrigine, and is a probable mechanism for many other classic and novel AEDs. Voltage-gated K+ channels are essential in the repolarisation and hyperpolarisation that follows paroxysmal depolarisation shifts (PDSs), and their mutations are the substrate for the benign neonatal epilepsy and episodic ataxia type 1; they are new targets for AEDs such as retigabine. Voltage-gated Ca2+ channels are involved in neurotransmitter release, in the sustained depolarisation-phase of PDSs, and in the generation of absence seizures; their mutations are a substrate for juvenile myoclonic epilepsy and the absence-like pattern seen in some mice; the antiabsence effect of ethosuximide is due to the inhibition of thalamic T-type Ca2+ channels. Voltage-gated Cl- channels are implicated in GABA(A) transmission, and mutations in these channels have been described in some families with juvenile myoclonic epilepsies, epilepsy with grand mal seizures on awakening or juvenile absence epilepsy. Hyperpolarisation-activated cation channels have been implicated in spike-wave seizures and in hippocampal epileptiform discharges. The Cl- ionophore of the GABA(A) receptor is responsible for the rapid post-PDS hyperpolarisation, it has been involved in epileptogenesis both in animals and humans, and mutations in these receptors have been found in families with juvenile myoclonic epilepsy or generalised epilepsy with febrile seizures plus; enhancement of GABA(A) inhibitory transmission is the primary mechanism of benzodiazepines and phenobarbital and is a mechanistic approach to the development of novel AEDs such as tiagabine or vigabatrin. Altered GABA(B)-receptor function is implicated in spike-wave seizures. Ionotropic glutamate receptors are implicated in the sustained depolarisation phase of PDS and in epileptogenesis both in animals and humans; felbamate, phenobarbital and topiramate block these receptors, and attenuation of glutamatergic excitatory transmission is another new mechanistic approach. Mutations in the nicotinic acetylcholine receptor are the substrates for the nocturnal frontal lobe epilepsy. The knowledge of the role of the ion channels in the epilepsies is allowing the design of new and more specific therapeutic strategies.

175 citations

Journal ArticleDOI
TL;DR: Data indicate an antiepileptogenic effect mediated by ICE inhibition and suggest that specific anti-IL-1beta pharmacological strategies can be envisaged to interfere with epileptogenic mechanisms.

175 citations

Journal ArticleDOI
TL;DR: Reductions in the extracellular volume can enhance synchronization among CA1 hippocampal neurons through non-synaptic mechanisms and provide a possible explanation for the observation in humans that decreased plasma osmolality, which can be associated with a wide range of clinical syndromes, leads to seizures.

175 citations


Network Information
Related Topics (5)
Epilepsy
62.7K papers, 1.7M citations
91% related
Hippocampal formation
30.6K papers, 1.7M citations
89% related
Hippocampus
34.9K papers, 1.9M citations
88% related
Dopaminergic
29K papers, 1.4M citations
88% related
Glutamate receptor
33.5K papers, 1.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023181
2022348
2021245
2020219
2019210
2018209