scispace - formally typeset
Search or ask a question
Topic

Epileptogenesis

About: Epileptogenesis is a research topic. Over the lifetime, 4218 publications have been published within this topic receiving 170809 citations.


Papers
More filters
Journal ArticleDOI
01 Apr 2012-Brain
TL;DR: Therapy for every patient with a brain tumour suffering from epilepsy should first and foremost aim at eliminating the tumour as well as the epileptic focus through resection combined with postoperative treatment, and only if this strategy does not result in adequate seizure control should medical antiepileptic treatment be intensified.
Abstract: Brain tumours frequently cause epileptic seizures. Medical antiepileptic treatment is often met with limited success. Pharmacoresistance, drug interactions and adverse events are common problems during treatment with antiepileptic drugs. The unpredictability of epileptic seizures and the treatment-related problems deeply affect the quality of life of patients with a brain tumour. In this review, we focus on both clinical and basic aspects of possible mechanisms in epileptogenesis in patients with a brain tumour. We provide an overview of the factors that are involved in epileptogenesis, starting focally at the tumour and the peritumoral tissue and eventually extending to alterations in functional connectivity throughout the brain. We correlate this knowledge to the known mechanisms of antiepileptic drugs. We conclude that the underlying mechanisms of epileptogenesis in patients with a brain tumour are poorly understood. The currently available antiepileptic drugs have little to no influence on the known epileptogenic mechanisms that could contribute to the poor efficacy. Better understanding of focal changes that are involved in epileptogenesis may provide new tools for optimal treatment of both the seizures and the underlying tumour. In our opinion, therapy for every patient with a brain tumour suffering from epilepsy should first and foremost aim at eliminating the tumour as well as the epileptic focus through resection combined with postoperative treatment, and only if this strategy does not result in adequate seizure control should medical antiepileptic treatment be intensified. If this strategy, however, results in sustained seizure freedom, tapering of antiepileptic drugs should be considered in the long term.

146 citations

Journal ArticleDOI
TL;DR: Novel therapies inhibiting the IL-1R1/TLR4 signaling in an established murine model of acquired epilepsy prevented disease progression and dramatically reduced chronic seizure recurrence, while the anticonvulsant drug carbamazepine was ineffective.

145 citations

Journal ArticleDOI
TL;DR: In this article, the cellular and synaptic physiology of developing rat neocortical neurons was studied using the in vitro slice method, using rats aged 1-28 days for analysis, and the results showed that immature neurons had higher input resistances, more linear I-V characteristics, longer membrane time constants, and slower rising and falling phases of action potentials.

145 citations

Journal ArticleDOI
TL;DR: The effects of limiting carbohydrate availability by reducing glycolysis using the Glycolytic inhibitor 2‐deoxy‐D‐glucose (2DG) in experimental models of seizures and epilepsy are evaluated.
Abstract: Objective Conventional anticonvulsants reduce neuronal excitability through effects on ion channels and synaptic function. Anticonvulsant mechanisms of the ketogenic diet remain incompletely understood. Because carbohydrates are restricted in patients on the ketogenic diet, we evaluated the effects of limiting carbohydrate availability by reducing glycolysis using the glycolytic inhibitor 2-deoxy-D-glucose (2DG) in experimental models of seizures and epilepsy. Methods Acute anticonvulsant actions of 2DG were assessed in vitro in rat hippocampal slices perfused with 7.5mM [K+]o, 4-aminopyridine, or bicuculline, and in vivo against seizures evoked by 6Hz stimulation in mice, audiogenic stimulation in Fring's mice, and maximal electroshock and subcutaneous pentylenetetrazol (Metrazol) in rats. Chronic antiepileptic effects of 2DG were evaluated in rats kindled from olfactory bulb or perforant path. Results 2DG (10mM) reduced interictal epileptiform bursts induced by 7.5mM [K+]o, 4-aminopyridine, and bicuculline, and electrographic seizures induced by high [K+]o in CA3 of hippocampus. 2DG reduced seizures evoked by 6Hz stimulation in mice (effective dose [ED]50 = 79.7mg/kg) and audiogenic stimulation in Fring's mice (ED50 = 206.4mg/kg). 2DG exerted chronic antiepileptic action by increasing afterdischarge thresholds in perforant path (but not olfactory bulb) kindling and caused a twofold slowing in progression of kindled seizures at both stimulation sites. 2DG did not protect against maximal electroshock or Metrazol seizures. Interpretation The glycolytic inhibitor 2DG exerts acute anticonvulsant and chronic antiepileptic actions, and has a novel pattern of effectiveness in preclinical screening models. These results identify metabolic regulation as a potential therapeutic target for seizure suppression and modification of epileptogenesis. Ann Neurol 2009;65:435–448.

145 citations

Journal ArticleDOI
TL;DR: The data suggest that the direction of GABAA-receptor signaling may be a determining factor for the age and sex-specific effects of prolonged seizures in the hippocampus, because they relate to normal brain development and possibly epileptogenesis.
Abstract: Early in development, the depolarizing GABAAergic signaling is needed for normal neuronal differentiation. It is shown here that hyperpolarizing reversal potentials of GABAAergic postsynaptic currents (EGABA) appear earlier in female than in male rat CA1 pyramidal neurons because of increased potassium chloride cotransporter 2 (KCC2) expression and decreased bumetanide-sensitive chloride transport in females. Three episodes of neonatal kainic acid-induced status epilepticus (3KA-SE), each elicited at postnatal days 4 (P4)–P6, reverse the direction of GABAAergic responses in both sexes. In males, 3KA-SE trigger a premature appearance of hyperpolarizing GABAAergic signaling at P9, instead of P14. This is driven by an increase in KCC2 expression and decrease in bumetanide-sensitive chloride cotransport. In 3KA-SE females, EGABA transiently becomes depolarizing at P8–P13 because of increase in the activity of a bumetanide-sensitive NKCC1 (sodium potassium chloride cotransporter 1)-like chloride cotransporter. However, females regain their hyperpolarizing GABAAergic signaling at P14 and do not manifest spontaneous seizures in adulthood. In maternally separated stressed controls, a hyperpolarizing shift in EGABA was observed in both sexes, associated with decreased bumetanide-sensitive chloride cotransport, whereas KCC2 immunoreactivity was increased in males only. GABAA receptor blockade at the time of 3KA-SE or maternal separation reversed their effects on EGABA. These data suggest that the direction of GABAA-receptor signaling may be a determining factor for the age and sex-specific effects of prolonged seizures in the hippocampus, because they relate to normal brain development and possibly epileptogenesis. These effects differ from the consequences of severe stress.

145 citations


Network Information
Related Topics (5)
Epilepsy
62.7K papers, 1.7M citations
91% related
Hippocampal formation
30.6K papers, 1.7M citations
89% related
Hippocampus
34.9K papers, 1.9M citations
88% related
Dopaminergic
29K papers, 1.4M citations
88% related
Glutamate receptor
33.5K papers, 1.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023181
2022348
2021245
2020219
2019210
2018209