scispace - formally typeset
Search or ask a question
Topic

Epitaxy

About: Epitaxy is a research topic. Over the lifetime, 38168 publications have been published within this topic receiving 645844 citations. The topic is also known as: Epitaxial Growth.


Papers
More filters
Journal ArticleDOI
TL;DR: The extent and microstructural characteristics of the lateral overgrowth were a strong function of stripe orientation and threading dislocations, originating from the interface of the underlying GaN with the AlN buffer layer were contained in the GaN grown in the window regions.
Abstract: Organometallic vapor phase lateral epitaxy and coalescence of GaN layers originating from GaN stripes deposited within 3-μm-wide windows spaced 3 μm apart and contained in SiO2 masks on GaN/AlN/6H–SiC(0001) substrates are reported. The extent and microstructural characteristics of the lateral overgrowth were a strong function of stripe orientation. A high density of threading dislocations, originating from the interface of the underlying GaN with the AlN buffer layer, were contained in the GaN grown in the window regions. The overgrowth regions, by contrast, contained a very low density of dislocations. The coalesced layers had a rms surface roughness of 0.25 nm.

744 citations

Journal ArticleDOI
TL;DR: In this paper, high quality epitaxial ZnO films were grown on R-plane sapphire substrates by metalorganic chemical vapor deposition, and the structural, piezoelectric, and optical properties of the films were investigated.
Abstract: High-quality ZnO films are receiving increased interest for use in low-loss high-frequency surface acoustic wave (SAW) devices, acousto-optic and optical modulators, as buffer layers for III-nitride growth, and as the active material in ultraviolet solid state lasers. In this work, high quality epitaxial ZnO films were grown on R-plane sapphire substrates by metalorganic chemical vapor deposition. The structural, piezoelectric, and optical properties of the ZnO films on R sapphire have been investigated. The epitaxial relationship between ZnO and R-Al2O3 was found to be (1120) ZnO∥(0112) Al2O3, and [0001] ZnO∥[0111] Al2O3. The interface between as-grown ZnO and R sapphire was atomically sharp and semicoherent, as evaluated by transmission electron microscopy. On annealing the films at temperatures above 850 °C, a solid state reaction occurred between ZnO and Al2O3, resulting in the formation of ZnAl2O4 (spinel) at the interface. A 15–20 nm spinel layer formed when the ZnO film was annealed at 850 °C fo...

730 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized some of the essential aspects of silicon-nanowire growth and of their electrical properties, including the expansion of the base of epitaxially grown Si wires, a stability criterion regarding the surface tension of the catalyst droplet, and the consequences of the Gibbs-Thomson effect for the silicon wire growth velocity.
Abstract: This paper summarizes some of the essential aspects of silicon-nanowire growth and of their electrical properties. In the first part, a brief description of the different growth techniques is given, though the general focus of this work is on chemical vapor deposition of silicon nanowires. The advantages and disadvantages of the different catalyst materials for silicon-wire growth are discussed at length. Thereafter, in the second part, three thermodynamic aspects of silicon-wire growth via the vapor–liquid–solid mechanism are presented and discussed. These are the expansion of the base of epitaxially grown Si wires, a stability criterion regarding the surface tension of the catalyst droplet, and the consequences of the Gibbs–Thomson effect for the silicon wire growth velocity. The third part is dedicated to the electrical properties of silicon nanowires. First, different silicon nanowire doping techniques are discussed. Attention is then focused on the diameter dependence of dopant ionization and the influence of interface trap states on the charge carrier density in silicon nanowires. It is concluded by a section on charge carrier mobility and mobility measurements.

721 citations

Journal ArticleDOI
TL;DR: In this article, the effect of substrate on the atomic/electronic structures of monolayer graphene is investigated and it is shown that the Raman features are independent of the substrate used.
Abstract: Graphene has attracted a lot of interest for fundamental studies as well as for potential applications. Till now, micromechanical cleavage (MC) of graphite has been used to produce high-quality graphene sheets on different substrates. Clear understanding of the substrate effect is important for the potential device fabrication of graphene. Here we report the results of the Raman studies of micromechanically cleaved monolayer graphene on standard SiO2 (300 nm)/Si, single crystal quartz, Si, glass, polydimethylsiloxane (PDMS), and NiFe. Our data suggests that the Raman features of monolayer graphene are independent of the substrate used; in other words, the effect of substrate on the atomic/electronic structures of graphene is negligible for graphene made by MC. On the other hand, epitaxial monolayer graphene (EMG) on SiC substrate is also investigated. Significant blueshift of Raman bands is observed, which is attributed to the interaction of the graphene sheet with the substrate, resulting in the change o...

700 citations

Journal ArticleDOI
TL;DR: Wurtzite InN films were grown on a thick GaN layer by metalorganic vapor phase epitaxy as discussed by the authors, and growth of a (0001)-oriented single crystalline layer was confirmed by Raman scattering, x-ray diffraction, and reflection high energy electron diffraction.
Abstract: Wurtzite InN films were grown on a thick GaN layer by metalorganic vapor phase epitaxy. Growth of a (0001)-oriented single crystalline layer was confirmed by Raman scattering, x-ray diffraction, and reflection high energy electron diffraction. We observed at room temperature strong photoluminescence (PL) at 0.76 eV as well as a clear absorption edge at 0.7–1.0 eV. In contrast, no PL was observed, even by high power excitation, at ∼1.9 eV, which had been reported as the band gap in absorption experiments on polycrystalline films. Careful inspection strongly suggests that a wurtzite InN single crystal has a true bandgap of 0.7–1.0 eV, and the discrepancy could be attributed to the difference in crystallinity.

692 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
97% related
Band gap
86.8K papers, 2.2M citations
95% related
Silicon
196K papers, 3M citations
95% related
Amorphous solid
117K papers, 2.2M citations
92% related
Magnetization
107.8K papers, 1.9M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023952
20221,923
2021493
2020730
2019858
2018846