scispace - formally typeset
Search or ask a question
Topic

Epitope mapping

About: Epitope mapping is a research topic. Over the lifetime, 4794 publications have been published within this topic receiving 182379 citations.


Papers
More filters
Journal ArticleDOI
22 Sep 2011-Nature
TL;DR: Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes.
Abstract: Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.

1,473 citations

Journal ArticleDOI
22 Jul 2020-Nature
TL;DR: A diverse collection of potent neutralizing antibodies against the SARS-CoV-2 spike protein have been isolated from five patients with severe COVID-19 and high serum neutralization titres, suggesting both of these regions at the top of the viral spike are immunogenic.
Abstract: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic continues, with devasting consequences for human lives and the global economy1,2. The discovery and development of virus-neutralizing monoclonal antibodies could be one approach to treat or prevent infection by this coronavirus. Here we report the isolation of sixty-one SARS-CoV-2-neutralizing monoclonal antibodies from five patients infected with SARS-CoV-2 and admitted to hospital with severe coronavirus disease 2019 (COVID-19). Among these are nineteen antibodies that potently neutralized authentic SARS-CoV-2 in vitro, nine of which exhibited very high potency, with 50% virus-inhibitory concentrations of 0.7 to 9 ng ml-1. Epitope mapping showed that this collection of nineteen antibodies was about equally divided between those directed against the receptor-binding domain (RBD) and those directed against the N-terminal domain (NTD), indicating that both of these regions at the top of the viral spike are immunogenic. In addition, two other powerful neutralizing antibodies recognized quaternary epitopes that overlap with the domains at the top of the spike. Cryo-electron microscopy reconstructions of one antibody that targets the RBD, a second that targets the NTD, and a third that bridges two separate RBDs showed that the antibodies recognize the closed, 'all RBD-down' conformation of the spike. Several of these monoclonal antibodies are promising candidates for clinical development as potential therapeutic and/or prophylactic agents against SARS-CoV-2.

1,232 citations

Journal ArticleDOI
TL;DR: Human monoclonal antibody 2G12 to the gp120 surface glycoprotein of human immunodeficiency virus type 1 (HIV-1) potently and broadly neutralizes primary and T-cell line-adapted clade B strains of HIV-1 and inhibits syncytium formation in the AA-2 cell line.
Abstract: We have isolated and characterized human monoclonal antibody 2G12 to the gp120 surface glycoprotein of human immunodeficiency virus type 1 (HIV-1). This antibody potently and broadly neutralizes primary and T-cell line-adapted clade B strains of HIV-1 in a peripheral blood mononuclear cell-based assay and inhibits syncytium formation in the AA-2 cell line. Furthermore, 2G12 possesses neutralizing activity against strains from clade A but not from clade E. Complement- and antibody-dependent cellular cytotoxicity-activating functions of 2G12 were also defined. The gp120 epitope recognized by 2G12 was found to be distinctive; binding of 2G12 to LAI recombinant gp120 was abolished by amino acid substitutions removing N-linked carbohydrates in the C2, C3, V4, and C4 regions of gp120. This gp120 mutant recognition pattern has not previously been observed, indicating that the 2G12 epitope is unusual. consistent with this, antibodies able to block 2G12 binding to recombinant gp120 were not detected in significant quantities in 16 HIV-positive human serum samples.

1,174 citations

Journal ArticleDOI
01 Oct 2006-Proteins
TL;DR: The standard feed‐forward (FNN) and recurrent neural network (RNN) have been used in this study for predicting B‐cell epitopes in an antigenic sequence and it has been observed that RNN (JE) was more successful than FNN in the prediction of B‐ cell epitopes.
Abstract: B-cell epitopes play a vital role in the development of peptide vaccines, in diagnosis of diseases, and also for allergy research. Experimental methods used for characterizing epitopes are time consuming and demand large resources. The availability of epitope prediction method(s) can rapidly aid experimenters in simplifying this problem. The standard feed-forward (FNN) and recurrent neural network (RNN) have been used in this study for predicting B-cell epitopes in an antigenic sequence. The networks have been trained and tested on a clean data set, which consists of 700 non-redundant B-cell epitopes obtained from Bcipep database and equal number of non-epitopes obtained randomly from Swiss-Prot database. The networks have been trained and tested at different input window length and hidden units. Maximum accuracy has been obtained using recurrent neural network (Jordan network) with a single hidden layer of 35 hidden units for window length of 16. The final network yields an overall prediction accuracy of 65.93% when tested by fivefold cross-validation. The corresponding sensitivity, specificity, and positive prediction values are 67.14, 64.71, and 65.61%, respectively. It has been observed that RNN (JE) was more successful than FNN in the prediction of B-cell epitopes. The length of the peptide is also important in the prediction of B-cell epitopes from antigenic sequences. The webserver ABCpred is freely available at www.imtech.res.in/raghava/abcpred/.

1,112 citations

Journal ArticleDOI
TL;DR: Analysis of STD NMR experiments performed under competitive conditions proved that the two saccharides studied bind at the same receptor site, thereby ruling out unspecific binding.
Abstract: A protocol based on saturation transfer difference (STD) NMR spectra was developed to characterize the binding interactions at an atom level, termed group epitope mapping (GEM). As an example we chose the well-studied system of galactose binding to the 120-kDa lectin Ricinus communis agglutinin I (RCA120). As ligands we used methyl β-d-galactoside and a biantennary decasaccharide. Analysis of the saturation transfer effects of methyl β-d-galactoside showed that the H2, H3, and H4 protons are saturated to the highest degree, giving evidence of their close proximity to protons of the RCA120 lectin. The direct interaction of the lectin with this region of the galactose is in excellent agreement with results obtained from the analysis of the binding specificities of many chemically modified galactose derivatives (Bhattacharyya, L.; Brewer, C. F. Eur. J. Biochem. 1988, 176, 207−212). This new NMR technique can identify the binding epitope of even complex ligands very quickly, which is a great improvement over ...

1,069 citations


Network Information
Related Topics (5)
Antigen
170.2K papers, 6.9M citations
90% related
T cell
109.5K papers, 5.5M citations
89% related
Immune system
182.8K papers, 7.9M citations
87% related
RNA
111.6K papers, 5.4M citations
87% related
Cell culture
133.3K papers, 5.3M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202348
202294
2021129
2020140
2019104
2018133