scispace - formally typeset
Search or ask a question

Showing papers on "Equal-cost multi-path routing published in 2005"


Proceedings ArticleDOI
13 Mar 2005
TL;DR: This paper suggests that the base station be mobile; in this way, the nodes located close to it change over time and the obtained improvement in terms of network lifetime is in the order of 500%.
Abstract: Although many energy efficient/conserving routing protocols have been proposed for wireless sensor networks, the concentration of data traffic towards a small number of base stations remains a major threat to the network lifetime. The main reason is that the sensor nodes located near a base station have to relay data for a large part of the network and thus deplete their batteries very quickly. The solution we propose in this paper suggests that the base station be mobile; in this way, the nodes located close to it change over time. Data collection protocols can then be optimized by taking both base station mobility and multi-hop routing into account. We first study the former, and conclude that the best mobility strategy consists in following the periphery of the network (we assume that the sensors are deployed within a circle). We then consider jointly mobility and routing algorithms in this case, and show that a better routing strategy uses a combination of round routes and short paths. We provide a detailed analytical model for each of our statements, and corroborate it with simulation results. We show that the obtained improvement in terms of network lifetime is in the order of 500%.

937 citations


Journal ArticleDOI
TL;DR: This short paper shows how position-based routing can be aplied to a city scenario without assuming that nodes have access to a static street map and without using source routing.
Abstract: Position-based routing, as it is used by protocols like Greedy Perimeter Stateless Routing (GPSR) [5], is very well suited for highly dynamic environments such as inter-vehicle communication on highways. However, it has been discussed that radio obstacles [4], as they are found in urban areas, have a significant negative impact on the performance of position-based routing. In prior work [6] we presented a position-based approach which alleviates this problem and is able to find robust routes within city environments. It is related to the idea of position-based source routing as proposed in [1] for terminode routing. The algorithm needs global knowledge of the city topology as it is provided by a static street map. Given this information the sender determines the junctions that have to be traversed by the packet using the Dijkstra shortest path algorithm. Forwarding between junctions is then done in a position-based fashion. In this short paper we show how position-based routing can be aplied to a city scenario without assuming that nodes have access to a static street map and without using source routing.

767 citations


Journal ArticleDOI
TL;DR: This work proposes a QoS-aware routing protocol that incorporates an admission control scheme and a feedback scheme to meet the QoS requirements of real-time applications and implements these schemes by using two bandwidth estimation methods to find the residual bandwidth available at each node to support new streams.
Abstract: Routing protocols for mobile ad hoc networks (MANETs) have been explored extensively in recent years. Much of this work is targeted at finding a feasible route from a source to a destination without considering current network traffic or application requirements. Therefore, the network may easily become overloaded with too much traffic and the application has no way to improve its performance under a given network traffic condition. While this may be acceptable for data transfer, many real-time applications require quality-of-service (QoS) support from the network. We believe that such QoS support can be achieved by either finding a route to satisfy the application requirements or offering network feedback to the application when the requirements cannot be met. We propose a QoS-aware routing protocol that incorporates an admission control scheme and a feedback scheme to meet the QoS requirements of real-time applications. The novel part of this QoS-aware routing protocol is the use of the approximate bandwidth estimation to react to network traffic. Our approach implements these schemes by using two bandwidth estimation methods to find the residual bandwidth available at each node to support new streams. We simulate our QoS-aware routing protocol for nodes running the IEEE 802.11 medium access control. Results of our experiments show that the packet delivery ratio increases greatly, and packet delay and energy dissipation decrease significantly, while the overall end-to-end throughput is not impacted, compared with routing protocols that do not provide QoS support.

510 citations


Journal ArticleDOI
01 Apr 2005
TL;DR: Stable, scalable load-sharing across paths, based on end-to-end measurements, can be achieved on the same rapid time- scale as rate control, namely the time-scale of round-trip times.
Abstract: Dynamic multi-path routing has the potential to improve the reliability and performance of a communication network, but carries a risk. Routing needs to respond quickly to achieve the potential benefits, but not so quickly that the network is destabilized. This paper studies how rapidly routing can respond, without compromising stability.We present a sufficient condition for the local stability of end-to-end algorithms for joint routing and rate control. The network model considered allows an arbitrary interconnection of sources and resources, and heterogeneous propagation delays. The sufficient condition we present is decentralized: the responsiveness of each route is restricted by the round-trip time of that route alone, and not by the round-trip times of other routes. Our results suggest that stable, scalable load-sharing across paths, based on end-to-end measurements, can be achieved on the same rapid time-scale as rate control, namely the time-scale of round-trip times.

323 citations


Proceedings ArticleDOI
22 Aug 2005
TL;DR: This paper explores a new point in this design space that aims to strike a better balance between the extensibility and robustness of a routing infrastructure, and proposes a declarative routing system to express routing protocols using a database query language.
Abstract: The Internet's core routing infrastructure, while arguably robust and efficient, has proven to be difficult to evolve to accommodate the needs of new applications. Prior research on this problem has included new hard-coded routing protocols on the one hand, and fully extensible Active Networks on the other. In this paper, we explore a new point in this design space that aims to strike a better balance between the extensibility and robustness of a routing infrastructure. The basic idea of our solution, which we call declarative routing, is to express routing protocols using a database query language. We show that our query language is a natural fit for routing, and can express a variety of well-known routing protocols in a compact and clean fashion. We discuss the security of our proposal in terms of its computational expressive power and language design. Via simulation, and deployment on PlanetLab, we demonstrate that our system imposes no fundamental limits relative to traditional protocols, is amenable to query optimizations, and can sustain long-lived routes under network churn and congestion.

322 citations


Journal ArticleDOI
TL;DR: This paper presents problem instances with as many as 1200 customers along with estimated solutions and introduces the variable-length neighbor list as a tool to reduce the number of unproductive computations.

275 citations


Proceedings ArticleDOI
13 Jun 2005
TL;DR: This work simulates and evaluates the proposed router architecture which utilizes adaptive routing while maintaining low latency, and results indicate that the architecture is effective in balancing the performance and energy of NoC designs.
Abstract: The increased deployment of system-on-chip designs has drawn attention to the limitations of on-chip interconnects. As a potential solution to these limitations, networks-on-chip (NoC) have been proposed. The NoC routing algorithm significantly influences the performance and energy consumption of the chip. We propose a router architecture which utilizes adaptive routing while maintaining low latency. The two-stage pipelined architecture uses look ahead routing, speculative allocation, and optimal output path selection concurrently. The routing algorithm benefits from congestion-aware flow control, making better routing decisions. We simulate and evaluate the proposed architecture in terms of network latency and energy consumption. Our results indicate that the architecture is effective in balancing the performance and energy of NoC designs.

269 citations


Journal ArticleDOI
TL;DR: In larger networks that are not uniformly populated with nodes, terminode routing outperforms, existing location-based or MANET routing protocols, and in smaller networks; the performance is comparable to MANet routing protocols.
Abstract: Using location information to help routing is often proposed as a means to achieve scalability in large mobile ad hoc networks. However, location-based routing is difficult when there are holes in the network topology and nodes are mobile or frequently disconnected to save battery. Terminode routing, presented here, addresses these issues. It uses a combination of location-based routing (terminode remote routing, TRR), used when the destination is far, and link state-routing (terminode local routing, TLR), used when the destination is close. TRR uses anchored paths, a list of geographic points (not nodes) used as loose source routing information. Anchored paths are discovered and managed by sources, using one of two low overhead protocols: friend assisted path discovery and geographical map-based path discovery. Our simulation results show that terminode routing performs well in networks of various sizes. In smaller networks; the performance is comparable to MANET routing protocols. In larger networks that are not uniformly populated with nodes, terminode routing outperforms, existing location-based or MANET routing protocols.

263 citations


Journal ArticleDOI
TL;DR: It is shown by simulation that the RDG outperforms previously proposed routing graphs in the context of the Greedy perimeter stateless routing (GPSR) protocol, and theoretical bounds on the quality of paths discovered using GPSR are investigated.
Abstract: We propose a new routing graph, the restricted Delaunay graph (RDG), for mobile ad hoc networks. Combined with a node clustering algorithm, the RDG can be used as an underlying graph for geographic routing protocols. This graph has the following attractive properties: 1) it is planar; 2) between any two graph nodes there exists a path whose length, whether measured in terms of topological or Euclidean distance, is only a constant times the minimum length possible; and 3) the graph can be maintained efficiently in a distributed manner when the nodes move around. Furthermore, each node only needs constant time to make routing decisions. We show by simulation that the RDG outperforms previously proposed routing graphs in the context of the Greedy perimeter stateless routing (GPSR) protocol. Finally, we investigate theoretical bounds on the quality of paths discovered using GPSR.

226 citations


Journal ArticleDOI
TL;DR: This paper surveys applications of combinatorial optimization to multicast routing and discusses the most important problems considered in this area, as well as their models.

224 citations


Journal ArticleDOI
TL;DR: This paper proposes and evaluates an approach that can realize near optimal traffic distribution without changes to routing protocols and forwarding mechanisms in IP networks and explores the tradeoff that exists between performance and the configuration overhead that the solution requires.
Abstract: Traffic engineering aims to distribute traffic so as to "optimize" some performance criterion. This optimal distribution of traffic depends on both the routing protocol and the forwarding mechanisms in use in the network. In IP networks running the OSPF or IS-IS protocols, routing is over shortest paths, and forwarding mechanisms distribute traffic "uniformly" over equal cost shortest paths. These constraints often make achieving an optimal distribution of traffic impossible. In this paper, we propose and evaluate an approach that can realize near optimal traffic distribution without changes to routing protocols and forwarding mechanisms. In addition, we explore the tradeoff that exists between performance and the configuration overhead that our solution requires. The paper's contributions are in formulating and evaluating an approach to traffic engineering in IP networks that achieves near-optimal performance while preserving the existing infrastructure.

Journal ArticleDOI
TL;DR: It turns out that routing over fewer but longer hops may even outperform nearest-neighbor routing, in particular for high end-to-end delivery probabilities.
Abstract: This paper addresses the routing problem for large wireless networks of randomly distributed nodes with Rayleigh fading channels. First, we establish that the distances between neighboring nodes in a Poisson point process follow a generalized Rayleigh distribution. Based on this result, it is then shown that, given an end-to-end packet delivery probability (as a quality of service requirement), the energy benefits of routing over many short hops are significantly smaller than for deterministic network models that are based on the geometric disk abstraction. If the permissible delay for short-hop routing and long-hop routing is the same, it turns out that routing over fewer but longer hops may even outperform nearest-neighbor routing, in particular for high end-to-end delivery probabilities.

Journal ArticleDOI
TL;DR: A non-classic algebraic theory is developed for investigating the convergence properties of dynamic routing protocols and shows that routing protocols can be made to converge to shortest and widest paths, but that the composite metric of Internet Gateway Routing Protocol (IGRP) does not lead to optimal paths.
Abstract: We develop a non-classic algebraic theory for the purpose of investigating the convergence properties of dynamic routing protocols. The algebraic theory can be regarded as a generalization of shortest-path routing, where the new concept of free cycle generalizes that of a positive-length cycle. A primary result then states that routing protocols always converge, though not necessarily onto optimal paths, in networks where all cycles are free. Monotonicity and isotonicity are two algebraic properties that strengthen convergence results. Monotonicity implies protocol convergence in every network, and isotonicity assures convergence onto optimal paths. A great many applications arise as particular instances of the algebraic theory. In intra-domain routing, we show that routing protocols can be made to converge to shortest and widest paths, for example, but that the composite metric of Internet Gateway Routing Protocol (IGRP) does not lead to optimal paths. The more interesting applications, however, relate to inter-domain routing and its Border Gateway Protocol (BGP), where the algebraic framework provides a mathematical template for the specification, design, and verification of routing policies. We formulate existing guidelines for inter-domain routing in algebraic terms, propose new guidelines contemplating backup relationships between domains, and derive a sufficient condition for signaling correctness of internal-BGP.

Proceedings ArticleDOI
25 Jun 2005
TL;DR: The results of the extensive simulation experiments show that BeeAdHoc consumes significantly less energy as compared to DSR, AODV, and DSDV, which are state-of-the-art routing algorithms, without making any compromise on traditional performance metrics.
Abstract: In this paper we present BeeAdHoc, a new routing algorithm for energy efficient routing in mobile ad hoc networks. The algorithm is inspired by the foraging principles of honey bees. The algorithm mainly utilizes two types of agents, scouts and foragers, for doing routing in mobile ad hoc networks. BeeAdHoc is a reactive source routing algorithm and it consumes less energy as compared to existing state-of-the-art routing algorithms because it utilizes less control packets to do routing. The results of our extensive simulation experiments show that BeeAdHoc consumes significantly less energy as compared to DSR, AODV, and DSDV, which are state-of-the-art routing algorithms, without making any compromise on traditional performance metrics (packet delivery ratio, delay and throughput).

Proceedings ArticleDOI
06 Nov 2005
TL;DR: This paper presents a protocol, path vector exchange (PVEX), that maintains local face information at each node efficiently, and a new geographic routing algorithm, greedy path vector face routing (GPVFR), that achieves better routing performance in terms of both path stretch and hop stretch than existing geographic routing algorithms by exploiting availableLocal face information.
Abstract: Existing geographic routing algorithms depend on the planarization of the network connectivity graph for correctness, and the planarization process gives rise to a well-defined notion of "faces". In this paper, we demonstrate that we can improve routing performance by storing a small amount of local face information at each node. We present a protocol, path vector exchange (PVEX), that maintains local face information at each node efficiently, and a new geographic routing algorithm, greedy path vector face routing (GPVFR), that achieves better routing performance in terms of both path stretch and hop stretch than existing geographic routing algorithms by exploiting available local face information. Our simulations demonstrate that GPVFR/PVEX achieves significantly reduced path and hop stretch than greedy perimeter stateless routing (GPSR) and somewhat better performance than greedy other adaptive face routing (GOAFR+) over a wide range of network topologies. The cost of this improved performance is a small amount of additional storage, and the bandwidth required for our algorithm is comparable to GPSR and GOAFR+ in quasi-static networks.

Journal ArticleDOI
TL;DR: A flexible model where traffic belongs to a polytope is introduced, which can be considered as a mathematical framework for a new flexible virtual private network service offer and also introduces a new concept: the routing of apolytope.
Abstract: Due to the success of the Internet and the diversity of communication applications, it is becoming increasingly difficult to forecast traffic patterns. To capture the traffic variations, we introduce a flexible model where traffic belongs to a polytope. We assume that the traffic demands between nodes can be carried on many paths, with respect to network resources. Moreover, to guarantee the network stability and to make the routing easy to implement, the proportions of traffic flowing through each path have to be independent of the current traffic demands. We show that a minimum-cost routing satisfying the previous properties can be efficiently computed by column and constraint generations. We then present several strategies related to certain algorithmic details. Finally, theoretical and computational studies show that this new flexible model can be much more economical than a classical deterministic model based on a given traffic matrix. This paper can be considered as a mathematical framework for a new flexible virtual private network service offer. It also introduces a new concept: the routing of a polytope.

Proceedings ArticleDOI
18 Jan 2005
TL;DR: This paper proposes the first routing algorithm that considers feasibility of redundant via insertion in the detailed routing stage, and transforms the routing problem to a multiple constraint shortest path problem, and solved by Lagrangian relaxation technique.
Abstract: Redundant via insertion is a good solution to reduce the yield loss by via failure. However, the existing methods are all post-layout optimizations that insert redundant via after detailed routing. In this paper, we propose the first routing algorithm that considers feasibility of redundant via insertion in the detailed routing stage. Our routing problem is formulated as maze routing with redundant via constraints. The problem is transformed to a multiple constraint shortest path problem, and solved by Lagrangian relaxation technique. Experimental results show that our algorithm can find routing layout with much higher rate of redundant via than conventional maze routing.

Proceedings ArticleDOI
13 Mar 2005
TL;DR: A query routing protocol that allows low bandwidth consumption during query forwarding using a low cost mechanism to create and maintain information about nearby objects and a novel data structure called an exponentially decaying bloom filter (EDBF) that encodes such probabilistic routing tables in a highly compressed manner.
Abstract: Searching for content in peer-to-peer networks is an interesting and challenging problem. Queries in Gnutella-like unstructured systems that use flooding or random walk to search must visit O(n) nodes in a network of size n, thus consuming significant amounts of bandwidth. In this paper, we propose a query routing protocol that allows low bandwidth consumption during query forwarding using a low cost mechanism to create and maintain information about nearby objects. To achieve this, our protocol maintains a lightweight probabilistic routing table at each node that suggests the location of each object in the network. Following the corresponding routing table entries, a query can reach the destination in a small number of hops with high probability. However, maintaining routing tables in a large and highly dynamic network requires non-traditional mechanisms. We design a novel data structure called an exponentially decaying bloom filter (EDBF) that encodes such probabilistic routing tables in a highly compressed manner, and allows for efficient aggregation and propagation. The search primitives provided by our system can be used to search for single keys or multiple keywords with equal ease. Analytical modeling of our design predicts significant improvements in search efficiency, verified through extensive simulations in which we observed an order of magnitude reduction in query path length over previous proposals.

Journal ArticleDOI
TL;DR: The leading forwarding rules for geographical routing are compared in this framework, and the energy efficiency of each of them is studied, and a new forwarding scheme, partial topology knowledge forwarding (PTKF), is introduced, and shown to outperform other existing schemes in typical application scenarios.
Abstract: Since ad hoc and sensor networks can be composed of a very large number of devices, the scalability of network protocols is a major design concern. Furthermore, network protocols must be designed to prolong the battery lifetime of the devices. However, most existing routing techniques for ad hoc networks are known not to scale well. On the other hand, the so-called geographical routing algorithms are known to be scalable but their energy efficiency has never been extensively and comparatively studied. In a geographical routing algorithm, data packets are forwarded by a node to its neighbor based on their respective positions. The neighborhood of each node is constituted by the nodes that lie within a certain radio range. Thus, from the perspective of a node forwarding a packet, the next hop depends on the width of the neighborhood it perceives. The analytical framework proposed in this paper allows to analyze the relationship between the energy efficiency of the routing tasks and the extension of the range of the topology knowledge for each node. A wider topology knowledge may improve the energy efficiency of the routing tasks but increases the cost of topology information due to signaling packets needed to acquire this information. The problem of determining the optimal topology knowledge range for each node to make energy efficient geographical routing decisions is tackled by integer linear programming. It is shown that the problem is intrinsically localized, i.e., a limited topology knowledge is sufficient to make energy efficient forwarding decisions. The leading forwarding rules for geographical routing are compared in this framework, and the energy efficiency of each of them is studied. Moreover, a new forwarding scheme, partial topology knowledge forwarding (PTKF), is introduced, and shown to outperform other existing schemes in typical application scenarios. A probe-based distributed protocol for knowledge range adjustment (PRADA) is finally introduced that allows each node to efficiently select online its topology knowledge range. PRADA is shown to rapidly converge to a near-optimal solution.

Patent
31 Aug 2005
TL;DR: In this paper, a method, apparatus and computer program product for providing dynamic routing support for Half-Duplex Virtual Routing and Forwarding (HDVRF) environments is presented.
Abstract: A method, apparatus and computer program product for providing dynamic routing support for Half-Duplex Virtual Routing and Forwarding (HDVRF) environments. The method, apparatus and computer program function to configure a forwarding Virtual Routing and Forwarding (VRF) table for a router with information to forward incoming packets to a central location within a hub and spoke environment. The method, apparatus and computer program also function to populate a routing Virtual Routing and Forwarding (VRF) table for the router with routing information received from ingress interfaces of the router. The method, apparatus and computer program function further forwards packets received on egress interfaces of the router according to the forwarding VRF table.

Journal ArticleDOI
TL;DR: A prediction-based link availability estimation is introduced to quantify the link reliability and is further used to develop routing metrics for path selection in terms of path reliability to improve routing performances.
Abstract: A Mobile Ad hoc Network (MANET) is a collection of wireless mobile terminals that are able to dynamically form a temporary network without any aid from fixed infrastructure or centralized administration. One critical issue for routing in MANETs is how to select reliable paths that can last as long as possible since terminal mobility may cause radio links to be broken frequently. To solve this problem, a criterion that can judge path reliability is needed. The reliability of a path depends on the number of links and the reliability of each link constituting the path. Many routing metrics in terms of number of links have been proposed, such as the shortest path routing. However, how to measure link availability or reliability in order to find more reliable paths has not been addressed adequately in the literature. (By a link being available, we mean that the radio quality of the link satisfies the minimum requirement for successful communication. Link availability is used to measure probability or degree that a link is available. The terms availability and reliability are used interchangeable in this paper.) This paper first introduces a prediction-based link availability estimation to quantify the link reliability. This quantity makes use of some instantly available information and also considers the dynamic nature of link status in order to properly reflect the link reliability. Then, this quantity has been further used to develop routing metrics for path selection in terms of path reliability to improve routing performances. The proposed schemes have been investigated through computer simulation.

Proceedings ArticleDOI
25 May 2005
TL;DR: This paper proves that given a unit disk graph and the angles between adjacent edges, it is NP-hard to find a valid embedding in the plane such that neighboring nodes are within distance 1 from each other and non-neighboring nodes are at least distance 1 away, and proposes a practical anchor-free embedding scheme by solving a linear program.
Abstract: Location information is very useful in the design of sensor network infrastructures. In this paper, we study the anchor-free 2D localization problem by using local angle measurements in a sensor network. We prove that given a unit disk graph and the angles between adjacent edges, it is NP-hard to find a valid embedding in the plane such that neighboring nodes are within distance 1 from each other and non-neighboring nodes are at least distance 1 away. Despite the negative results, however, one can find a planar spanner of a unit disk graph by using only local angles. The planar spanner can be used to generate a set of virtual coordinates that enable efficient and local routing schemes such as geographical routing or approximate shortest path routing. We also proposed a practical anchor-free embedding scheme by solving a linear program. We show by simulation that not only does it give very good local embedding, i.e., neighboring nodes are close and non-neighboring nodes are far away, but it also gives a quite accurate global view such that geographical routing and approximate shortest path routing on the embedded graph are almost identical to those on the original (true) embedding. The embedding algorithm can be adapted to other models of wireless sensor networks and is robust to measurement noise.

Journal ArticleDOI
TL;DR: Two dynamic multilayer routing policies implemented in the photonic MPLS router developed by NTT for IP+optical generalized MPLS networks are presented and it is observed that p is the key factor in choosing the most appropriate routing policy.
Abstract: This article presents two dynamic multilayer routing policies implemented in the photonic MPLS router developed by NTT for IP+optical generalized MPLS networks. According to IP traffic requests, wavelength paths called lambda label switched paths are set up and released in a distributed manner based on GMPLS routing and signaling protocols. Both dynamic routing policies first try to allocate a newly requested electrical path to an existing optical path that directly connects the source and destination nodes. If such a path is not available, the two policies employ different procedures. Policy 1 tries to find available existing optical paths with two or more hops that connect the source and destination nodes. Policy 2 tries to establish a new one-hop optical path between source and destination nodes. The performances of the two routing policies are evaluated. Simulation results suggest that policy 2 outperforms policy 1 if p is large, where p is the number of packet-switching-capable ports; the reverse is true only if p is small. We observe that p is the key factor in choosing the most appropriate routing policy. We also describe items that need to be standardized in the IETF to effectively achieve multilayer traffic engineering.

Journal ArticleDOI
01 Nov 2005
TL;DR: A reactive location routing algorithm that uses cluster-based flooding for Vehicular Ad-hoc Networks (VANET) and Dynamic Source Routing (DSR) in terms of average Route Discovery (RD) time, End-to-End Delay (EED), Routing Load, Routing Overhead, overhead, and Delivery Ratio is presented.
Abstract: This paper presents a reactive location routing algorithm that uses cluster-based flooding for Vehicular Ad-hoc Networks (VANET). We compare both position-based and non-position-based routing strategies in typical urban and motorway traffic scenarios. A microscopic traffic model, developed in OPNET, is used to evaluate the performance of the Location Routing Algorithm with Cluster-Based Flooding (LORA_CBF), Ad-Hoc On-demand Distance Vector (AODV) and Dynamic Source Routing (DSR) in terms of average Route Discovery (RD) time, End-to-End Delay (EED), Routing Load, Routing Overhead, Overhead, and Delivery Ratio.

Journal ArticleDOI
TL;DR: This paper proposes an energy-aware QoS routing protocol for sensor networks which can also run efficiently with best-effort traffic and demonstrates the effectiveness of the approach for different metrics with respect to the baseline approach.
Abstract: Many new routing protocols have been proposed for wireless sensor networks in recent years. Almost all of the routing protocols considered energy efficiency as the ultimate objective since energy is a very scarce resource for sensor nodes. However, the introduction imaging sensors has posed additional challenges. Transmission of imaging data requires both energy and QoS aware routing in order to ensure efficient usage of the sensors and effective access to the gathered measurements. In this paper, we propose an energy-aware QoS routing protocol for sensor networks which can also run efficiently with best-effort traffic. The protocol finds a least-cost, delay-constrained path for real-time data in terms of link cost that captures nodes' energy reserve, transmission energy, error rate and other communication parameters. Moreover, the throughput for non-real-time data is maximized by adjusting the service rate for both real-time and non-real-time data at the sensor nodes. Such adjustment of service rate is done by using two different mechanisms. Simulation results have demonstrated the effectiveness of our approach for different metrics with respect to the baseline approach where same link cost function is used without any service differentiation mechanism.

Journal ArticleDOI
TL;DR: This paper proposes a new useful variant of the MDVRP, namely multi-depot vehicle routing problem with fixed distribution of vehicles (MDVRPFD), to model the practicable cases in applications and proposes two solution methodologies: two-stage and one-stage approaches.
Abstract: This paper introduces multi-depot vehicle routing problem with fixed distribution of vehicles (MDVRPFD) which is one important and useful variant of the traditional multi-depot vehicle routing problem (MDVRP) in the supply chain management and transportation studies. After modeling the MDVRPFD as a binary programming problem, we propose two solution methodologies: two-stage and one-stage approaches. The two-stage approach decomposes the MDVRPFD into two independent subproblems, assignment and routing, and solves them separately. In contrast, the one-stage approach integrates the assignment with the routing where there are two kinds of routing methods-draft routing and detail routing. Experimental results show that our new one-stage algorithm outperforms the published methods. Note to Practitioners-This work is based on several consultancy work that we have done for transportation companies in Hong Kong. The multi-depot vehicle routing problem (MDVRP) is one of the core optimization problems in transportation, logistics, and supply chain management, which minimizes the total travel distance (the major factor of total transportation cost) among a number of given depots. However, in real practice, the MDVRP is not reliable because of the assumption that there have unlimited number of vehicles available in each depot. In this paper, we propose a new useful variant of the MDVRP, namely multi-depot vehicle routing problem with fixed distribution of vehicles (MDVRPFD), to model the practicable cases in applications. Two-stage and one-stage solution algorithms are also proposed. The industry participators can apply our new one-stage algorithm to solve the MDVRPFD directly and efficiently. Moreover, our one-stage solution framework allows users to smoothly add new specified constraints or variants.

Journal ArticleDOI
TL;DR: A new algorithm is described that propagates means and variances of the uncertain attributes along paths and compares partial paths that arrive at a given node within a user-specified time window and creates an effective solution set in a case study using a large network.
Abstract: We describe a method for finding nondominated paths for multiple routing objectives in networks where the routing attributes are uncertain, and the probability distributions that describe those attributes vary by time of day. This problem is particularly important in routing and scheduling of shipments of very hazardous materials. Our method extends and integrates the work of several previous authors, resulting in a new algorithm that propagates means and variances of the uncertain attributes along paths and compares partial paths that arrive at a given node within a user-specified time window. The comparison uses an approximate stochastic dominance criterion. We illustrate the effects of changing primary parameters of the algorithm using a small test network, and we show how the nondominated solution set achieved is larger than the set that would be identified if the uncertainty in routing attributes were ignored. We then demonstrate how the algorithm creates an effective solution set in a case study using a large network.

Journal ArticleDOI
TL;DR: The log-normal shadow fading model is applied to represent a realistic physical layer and use the probability p(x) for receiving a packet successfully as a function of distance x between two nodes to reduce computation time.
Abstract: Existing routing and broadcasting protocols for ad hoc networks assume an ideal physical layer model. We apply the log-normal shadow fading model to represent a realistic physical layer and use the probability p(x) for receiving a packet successfully as a function of distance x between two nodes. We define the transmission radius R as the distance at which p(R)=0.5. We propose a medium access control layer protocol, where receiver node acknowledges packet to sender node u times, where u*p(x)/spl ap/1. We derived an approximation for p(x) to reduce computation time. It can be used as the weight in the optimal shortest hop count routing scheme. We then study the optimal packet forwarding distance to minimize the hop count, and show that it is approximately 0.73R (for power attenuation degree 2). A hop count optimal, greedy, localized routing algorithm [referred as ideal hop count routing (IHCR)] for ad hoc wireless networks is then presented. We present another algorithm called expected progress routing with acknowledgment (referred as aEPR) for ad hoc wireless networks. Two variants of aEPR algorithm, namely, aEPR-1 and aEPR-u are also presented. Next, we propose projection progress scheme, and its two variants, 1-Projection and u-Projection. Iterative versions of aEPR and projection progress attempt to improve their performance. We then propose tR-greedy routing scheme, where packet is forwarded to neighbor closest to destination, among neighbors that are within distance tR. All described schemes are implemented, and their performances are evaluated and compared.

Proceedings ArticleDOI
01 Jan 2005
TL;DR: The studies show that academic networks appear to be more symmetric than general commercially deployed networks and that routing asymmetry exhibits a skewed distribution i.e., a few end-points seem to display a higher extent of participation on asymmetric routes.
Abstract: Routing asymmetry in the Internet can significantly affect the manner in which we model and simulate its behavior. In this paper, we study routing asymmetry in the Internet and present quantitative evaluations on the extent of such asymmetry today. Our quantitative evaluations provide a measure of the difference between the forward and reverse paths between two end points. Routing asymmetry has not been studied extensively before; this is primarily due to the lack of a systematic approach for quantifying asymmetry except for simply computing the difference between the forward and reverse path lengths. By applying our framework for representing asymmetry, we quantify routing asymmetry for both US higher education academic networks and general commercial networks at two different levels: the autonomous system (AS) level and the router (or link) level. We take into consideration, not only the difference in the forward and reverse path lengths, but also the AS and link identities and the sequence in which these entities appear on the paths. We measure the AS level routing asymmetry, and provide upper lower bounds on link level routing asymmetry. Our studies show that academic networks appear to be more symmetric than general commercially deployed networks. Furthermore, our studies demonstrate that routing asymmetry exhibits a skewed distribution i.e., a few end-points seem to display a higher extent of participation on asymmetric routes.

Journal ArticleDOI
TL;DR: This paper introduces the novel idea of information-directed routing, in which routing is formulated as a joint optimization of data transport and information aggregation, and derives information constraints from realistic signal models, and presents several routing algorithms that find near-optimal solutions for the joint optimization problem.
Abstract: In a sensor network, data routing is tightly coupled to the needs of a sensing task, and hence the application semantics. This paper introduces the novel idea of information-directed routing, in which routing is formulated as a joint optimization of data transport and information aggregation. The routing objective is to minimize communication cost, while maximizing information gain, differing from routing considerations for more general ad hoc networks. The paper uses the concrete problem of locating and tracking possibly moving signal sources as an example of information generation process, and considers two common information extraction patterns in a sensor network: routing a user query from an arbitrary entry node to the vicinity of signal sources and back, or to a prespecified exit node, maximizing information accumulated along the path. We derive information constraints from realistic signal models, and present several routing algorithms that find near-optimal solutions for the joint optimization problem. Simulation results have demonstrated that information-directed routing is a significant improvement over a previously reported greedy algorithm, as measured by sensing quality such as localization and tracking accuracy and communication quality such as success rate in routing around sensor holes.