scispace - formally typeset
Search or ask a question
Topic

Equal-cost multi-path routing

About: Equal-cost multi-path routing is a research topic. Over the lifetime, 10472 publications have been published within this topic receiving 249362 citations.


Papers
More filters
Proceedings ArticleDOI
21 Jun 2009
TL;DR: An analytical comparison between 6LoWPAN's mesh-under and route-over schemes in terms of the packet/fragment arrival probability, the total number of transmissions and the total delay between source and destination is performed.
Abstract: Transmission of IPv6 packets over Low-power Wireless Personal Area Networks (6LoWPAN) was considered nearly impractical once. The size of IPv6 packets is much larger than the packet size of the IEEE 802.15.4 data link layer. 6LoWPAN implements an adaptation layer between network and data link layers. Main purpose of the adaptation layer is to fragment and reassemble IPv6 packets. Implementation of the adaptation layer enhances the routing/forwarding decision of packets both network and adaptation layers. We can divide the routing scheme in 6LoWPAN into two categories: the mesh-under and the route-over, based on the routing decision taken on adaptation layer or network layer respectively. In this paper we perform an analytical comparison between these two schemes in terms of the packet/fragment arrival probability, the total number of transmissions and the total delay between source and destination. We also compare the selective fragment retransmission mechanism between mesh-under and route-over schemes.

73 citations

Journal ArticleDOI
TL;DR: This paper uses the internal social features of each node in the network to perform the routing process, which converts a routing problem in a highly mobile and unstructured contact space to a static and structured feature space.
Abstract: Most routing protocols for delay tolerant networks resort to the sufficient state information, including trajectory and contact information, to ensure routing efficiency. However, state information tends to be dynamic and hard to obtain without a global and/or long-term collection process. In this paper, we use the internal social features of each node in the network to perform the routing process. In this way, feature-based routing converts a routing problem in a highly mobile and unstructured contact space to a static and structured feature space. This approach is motivated from several human contact networks, such as the Infocom 2006 trace and MIT reality mining data, where people contact each other more frequently if they have more social features in common. Our approach includes two unique processes: social feature extraction and multipath routing. In social feature extraction, we use entropy to extract the m most informative social features to create a feature space (F-space): (F1, F2,..., Fm), where Fi corresponds to a feature. The routing method then becomes a hypercube-based feature matching process, where the routing process is a step-by-step feature difference resolving process. We offer two special multipath routing schemes: node-disjoint-based routing and delegation-based routing. Extensive simulations on both real and synthetic traces are conducted in comparison with several existing approaches, including spray-and-wait routing, spray-and-focus routing, and social-aware routing based on betweenness centrality and similarity. In addition, the effectiveness of multipath routing is evaluated and compared to that of single-path routing.

73 citations

Journal ArticleDOI
TL;DR: Simulation results demonstrate that EDGR exhibits higher energy efficiency, and has moderate performance improvements on network lifetime, packet delivery ratio, and delivery delay, compared to other geographic routing protocols in WSNs over a variety of communication scenarios passing through routing holes.
Abstract: Geographic routing has been considered as an attractive approach for resource-constrained wireless sensor networks (WSNs) since it exploits local location information instead of global topology information to route data. However, this routing approach often suffers from the routing hole (i.e., an area free of nodes in the direction closer to destination) in various environments such as buildings and obstacles during data delivery, resulting in route failure. Currently, existing geographic routing protocols tend to walk along only one side of the routing holes to recover the route, thus achieving suboptimal network performance such as longer delivery delay and lower delivery ratio. Furthermore, these protocols cannot guarantee that all packets are delivered in an energy-efficient manner once encountering routing holes. In this paper, we focus on addressing these issues and propose an energy-aware dual-path geographic routing (EDGR) protocol for better route recovery from routing holes. EDGR adaptively utilizes the location information, residual energy, and the characteristics of energy consumption to make routing decisions, and dynamically exploits two node-disjoint anchor lists, passing through two sides of the routing holes, to shift routing path for load balance. Moreover, we extend EDGR into three-dimensional (3D) sensor networks to provide energy-aware routing for routing hole detour. Simulation results demonstrate that EDGR exhibits higher energy efficiency, and has moderate performance improvements on network lifetime, packet delivery ratio, and delivery delay, compared to other geographic routing protocols in WSNs over a variety of communication scenarios passing through routing holes. The proposed EDGR is much applicable to resource-constrained WSNs with routing holes.

73 citations

Journal ArticleDOI
TL;DR: An overview of most recent reliable, energy efficient, scalable, fault tolerant, and QoS based hybrid routing mechanisms and point to directions for future research and development are provided.

73 citations

Journal ArticleDOI
TL;DR: This paper proposes a vehicular mobility model that reflects real-world vehicle movement and introduces a two-phase routing protocol (TOPO) that incorporates road map information and argues that the TOPO can serve as a framework that integrates existing VANET routing protocols.
Abstract: A vehicular ad hoc network (VANET) is a highly mobile wireless ad hoc network that is targeted to support vehicular safety, traffic monitoring, and other applications. Mobility models used in traditional mobile ad hoc networks cannot directly be applied to VANETs since real-world factors such as road layouts and traffic regulations are not considered. In this paper, we propose a vehicular mobility model that reflects real-world vehicle movement and study the performance of packet-routing protocols. First, we study the routing in small-scale VANETs and propose two routing schemes: (1) connection-based restricted forwarding (CBRF) and (2) connectionless geographic forwarding (CLGF). With the insights obtained, we consider routing in large-scale VANETs. Since road complexity and traffic variety may cause many potential problems that existing routing protocols cannot address, we introduce a two-phase routing protocol (TOPO) that incorporates road map information. The proposed protocol defines an overlay graph with roads of high vehicular density and access graphs that are connected to the overlay. While in the overlay, packets are forwarded along a precalculated path. As far as access routing is concerned, we employ the aforementioned CBRF and CLGF schemes and send packets to the overlay or handle packets delivered from the overlay. We argue that the TOPO can serve as a framework that integrates existing VANET routing protocols. We also consider data diversity in VANETs and design the TOPO as an intelligent transportation system (ITS)-friendly protocol. To validate our design philosophy and the routing protocol, we use different areas in the city of Orlando, FL, and generate vehicular mobility traces, following our mobility models. We feed the traces to network simulators and study the routing behavior. Simulation results demonstrate the performance and effectiveness of the proposed routing protocols for large-scale VANET scenarios.

73 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
82% related
Server
79.5K papers, 1.4M citations
82% related
Wireless ad hoc network
49K papers, 1.1M citations
81% related
Wireless network
122.5K papers, 2.1M citations
80% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202327
202268
20214
20204
201912
201833