scispace - formally typeset
Search or ask a question
Topic

Equal-cost multi-path routing

About: Equal-cost multi-path routing is a research topic. Over the lifetime, 10472 publications have been published within this topic receiving 249362 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The way non-Poisson traffic behaviour affects performance of routing strategies is investigated and how the results from dynamic routing investigation can help to optimise the network planning process is presented.

57 citations

Journal ArticleDOI
TL;DR: A mathematical framework is introduced to model contention that can be used to analyze any routing scheme with any mobility and channel model and compute the expected delays for different representative mobility-assisted routing schemes under random direction, random waypoint and community-based mobility models.
Abstract: A large body of work has theoretically analyzed the performance of mobility-assisted routing schemes for intermittently connected mobile networks. But the vast majority of these prior studies have ignored wireless contention. Recent papers have shown through simulations that ignoring contention leads to inaccurate and misleading results, even for sparse networks. In this paper, we analyze the performance of routing schemes under contention. First, we introduce a mathematical framework to model contention. This framework can be used to analyze any routing scheme with any mobility and channel model. Then, we use this framework to compute the expected delays for different representative mobility-assisted routing schemes under random direction, random waypoint and community-based mobility models. Finally, we use these delay expressions to optimize the design of routing schemes while demonstrating that designing and optimizing routing schemes using analytical expressions which ignore contention can lead to suboptimal or even erroneous behavior.

57 citations

Proceedings ArticleDOI
26 Jun 1990
TL;DR: The authors present a distributed table-filling algorithm for point-to-point routing in a degraded hypercube system that finds the shortest length existing path from each source to each destination in the faulty hypercube and fills the routing tables so that messages are routed along these paths.
Abstract: The authors present a distributed table-filling algorithm for point-to-point routing in a degraded hypercube system. This algorithm finds the shortest length existing path from each source to each destination in the faulty hypercube and fills the routing tables so that messages are routed along these paths. A novel scheme for broadcast routing with tables is proposed, and the algorithm required to fill the broadcast tables, given the point-to-point routing tables, is presented. In addition, the modifications necessary to make these algorithms ensure deadlock-free routing are given. A quantitative and equalitative comparison of previously proposed reroute strategies with table routing, where the tables are filled by the authors' algorithms, are presented. >

57 citations

Journal ArticleDOI
TL;DR: This approach is the first attempt to address adaptive and minimal routing in 2D meshes with faulty blocks using limited fault information and proposes three fault-tolerant minimal routing algorithms which are adaptive to allow all messages to use any minimal path.
Abstract: The minimal routing problem in mesh-connected multicomputers with faulty blocks is studied. Two-dimensional meshes are used to illustrate the approach. A sufficient condition for minimal routing in 2D meshes with faulty blocks is proposed. Unlike many traditional models that assume all the nodes know global fault distribution, our approach is based on the concept of an extended safety level, which is a special form of limited fault information. The extended safety level information is captured by a vector associated with each node. When the safety level of a node reaches a certain level (or meets certain conditions), a minimal path exists from this node to any nonfaulty nodes in 2D meshes. Specifically, we study the existence of minimal paths at a given source node, limited distribution of fault information, and minimal routing itself. We propose three fault-tolerant minimal routing algorithms which are adaptive to allow all messages to use any minimal path. We also provide some general ideas to extend our approaches to other low-dimensional mesh-connected multicomputers such as 2D tori and 3D meshes. Our approach is the first attempt to address adaptive and minimal routing in 2D meshes with faulty blocks using limited fault information.

57 citations

Journal ArticleDOI
TL;DR: This work studies approximating deterministic fluid models for overloaded queueing systems having multiple customer classes and multiple service pools, each with many servers, and obtains the desired routing flow rates in three cases: when the routing graph is a tree, a tree-like structure, or complete bipartite.
Abstract: Motivated by models of tenant assignment in public housing, we study approximating deterministic fluid models for overloaded queueing systems having multiple customer classes (classes of tenants) and multiple service pools (housing authorities), each with many servers (housing units). Customer abandonment acts to keep the system stable, yielding a proper steady-state description. Motivated by fairness considerations, we assume that customers are selected for service by newly available servers on a first-come, first-served (FCFS) basis from all classes the corresponding service pools are allowed to serve. In this context, it is challenging to determine stationary routing flow rates between customer classes and service pools. Given those routing flow rates, each single fluid queue can be analyzed separately using previously established methods. Our ability to determine the routing flow rates depends on the structure of the network routing graph. We obtain the desired routing flow rates in three cases: when the routing graph is (i) a tree (sparsely connected), (ii) complete bipartite (fully connected), and (iii) an appropriate combination of the previous two cases. Other cases remain unsolved. In the last two solved cases, the routing flow rates are actually not uniquely determined by the fluid model, but become so once we make stochastic assumptions about the queueing models that the fluid model approximates.

57 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
82% related
Server
79.5K papers, 1.4M citations
82% related
Wireless ad hoc network
49K papers, 1.1M citations
81% related
Wireless network
122.5K papers, 2.1M citations
80% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202327
202268
20214
20204
201912
201833