scispace - formally typeset
Search or ask a question
Topic

Equal-cost multi-path routing

About: Equal-cost multi-path routing is a research topic. Over the lifetime, 10472 publications have been published within this topic receiving 249362 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Results indicate that the limited path heuristic is relatively insensitive to the number of constraints and is superior to the limited granularity heuristic in solving k-constrained QoS routing problems when k > 3.
Abstract: Multiconstrained quality-of-service (QoS) routing deals with finding routes that satisfy multiple independent QoS constraints. This problem is NP-hard. In this paper, two heuristics, the limited granularity heuristic and the limited path heuristic, are investigated. Both heuristics extend the Bellman-Ford shortest path algorithm and solve general k-constrained QoS routing problems. Analytical and simulation studies are conducted to compare the time/space requirements of the heuristics and the effectiveness of the heuristics in finding paths that satisfy the QoS constraints. The major results of this paper are the following. For an N-nodes and E-edges network with k (a small constant) independent QoS constraints, the limited granularity heuristic must maintain a table of size O(|N|k- 1) in each node to be effective, which results in a time complexity of O (|N|K|E|); while the limited path heuristic can achieve very high performance by maintaining O (|N|2lg(|N|)) entries in each node. These results indicate that the limited path heuristic is relatively insensitive to the number of constraints and is superior to the limited granularity heuristic in solving k-constrained QoS routing problems when k > 3.

206 citations

Journal ArticleDOI
TL;DR: A comprehensive review of travel time modelling, applications and solution methods is presented and a first classification in point-to-point and multiple-point problems is made with respect to the quality and evolution of information.

205 citations

Book ChapterDOI
08 Jul 2001
TL;DR: It is mainly proved that n-node trees support routing schemes with message headers, node addresses, and local memory space of size O(log n) bits, and such that every local routing decision is taken in constant time.
Abstract: This article focuses on routing messages along shortest paths in tree networks, using compact distributed data structures. We mainly prove that n-node trees support routing schemes with message headers, node addresses, and local memory space of size O(log n) bits, and such that every local routing decision is taken in constant time. This improves the best known routing scheme by a factor of O(log n) in term of both memory requirements and routing time. Our routing scheme requires headers and addresses of size slightly larger than log n, motivated by an inherent trade-off between address-size and memory space, i.e., any routing scheme with addresses on log n bits requires Ω(√n) bits of local memory-space. This shows that a little variation of the address size, e.g., by an additive O(log n) bits factor, has a significant impact on the local memory space.

205 citations

Journal ArticleDOI
TL;DR: This paper presents a class of routing protocols for vehicular ad hoc networks (VANETs) called the Intersection-based Geographical Routing Protocol (IGRP), which outperforms existing routing schemes in city environments and significantly improves VANET performance when compared with several prominent routing protocols, such as greedy perimeter stateless routing (GPSR), greedy perimeter coordinator routing ( GPCR), and optimized link-state routing (OLSR).
Abstract: This paper presents a class of routing protocols for vehicular ad hoc networks (VANETs) called the Intersection-based Geographical Routing Protocol (IGRP), which outperforms existing routing schemes in city environments. IGRP is based on an effective selection of road intersections through which a packet must pass to reach the gateway to the Internet. The selection is made in a way that guarantees, with high probability, network connectivity among the road intersections while satisfying quality-of-service (QoS) constraints on tolerable delay, bandwidth usage, and error rate. Geographical forwarding is used to transfer packets between any two intersections on the path, reducing the path's sensitivity to individual node movements. To achieve this, we mathematically formulate the QoS routing problem as a constrained optimization problem. Specifically, analytical expressions for the connectivity probability, end-to-end delay, hop count, and bit error rate (BER) of a route in a two-way road scenario are derived. Then, we propose a genetic algorithm to solve the optimization problem. Numerical and simulation results show that the proposed approach gives optimal or near-optimal solutions and significantly improves VANET performance when compared with several prominent routing protocols, such as greedy perimeter stateless routing (GPSR), greedy perimeter coordinator routing (GPCR), and optimized link-state routing (OLSR).

205 citations

Journal ArticleDOI
TL;DR: This paper proposes a class of routing schemes that can identify the nodes of "highest utility" for routing, improving the delay and delivery ratio by four to five times, and proposes an analytical framework based on fluid models that can be used to analyze the performance of various opportunistic routing strategies, in heterogeneous settings.
Abstract: Communication networks are traditionally assumed to be connected. However, emerging wireless applications such as vehicular networks, pocket-switched networks, etc., coupled with volatile links, node mobility, and power outages, will require the network to operate despite frequent disconnections. To this end, opportunistic routing techniques have been proposed, where a node may store-and-carry a message for some time, until a new forwarding opportunity arises. Although a number of such algorithms exist, most focus on relatively homogeneous settings of nodes. However, in many envisioned applications, participating nodes might include handhelds, vehicles, sensors, etc. These various "classesrdquo have diverse characteristics and mobility patterns, and will contribute quite differently to the routing process. In this paper, we address the problem of routing in intermittently connected wireless networks comprising multiple classes of nodes. We show that proposed solutions, which perform well in homogeneous scenarios, are not as competent in this setting. To this end, we propose a class of routing schemes that can identify the nodes of "highest utilityrdquo for routing, improving the delay and delivery ratio by four to five times. Additionally, we propose an analytical framework based on fluid models that can be used to analyze the performance of various opportunistic routing strategies, in heterogeneous settings.

205 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
82% related
Server
79.5K papers, 1.4M citations
82% related
Wireless ad hoc network
49K papers, 1.1M citations
81% related
Wireless network
122.5K papers, 2.1M citations
80% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202327
202268
20214
20204
201912
201833