scispace - formally typeset
Search or ask a question
Topic

Equal-cost multi-path routing

About: Equal-cost multi-path routing is a research topic. Over the lifetime, 10472 publications have been published within this topic receiving 249362 citations.


Papers
More filters
Proceedings ArticleDOI
06 Nov 2005
TL;DR: This paper presents a protocol, path vector exchange (PVEX), that maintains local face information at each node efficiently, and a new geographic routing algorithm, greedy path vector face routing (GPVFR), that achieves better routing performance in terms of both path stretch and hop stretch than existing geographic routing algorithms by exploiting availableLocal face information.
Abstract: Existing geographic routing algorithms depend on the planarization of the network connectivity graph for correctness, and the planarization process gives rise to a well-defined notion of "faces". In this paper, we demonstrate that we can improve routing performance by storing a small amount of local face information at each node. We present a protocol, path vector exchange (PVEX), that maintains local face information at each node efficiently, and a new geographic routing algorithm, greedy path vector face routing (GPVFR), that achieves better routing performance in terms of both path stretch and hop stretch than existing geographic routing algorithms by exploiting available local face information. Our simulations demonstrate that GPVFR/PVEX achieves significantly reduced path and hop stretch than greedy perimeter stateless routing (GPSR) and somewhat better performance than greedy other adaptive face routing (GOAFR+) over a wide range of network topologies. The cost of this improved performance is a small amount of additional storage, and the bandwidth required for our algorithm is comparable to GPSR and GOAFR+ in quasi-static networks.

172 citations

Journal ArticleDOI
TL;DR: It is argued that routing should not only be aware of, but also be adaptive to, network congestion, and proposed a routing protocol (CRP) with such properties is proposed.
Abstract: Mobility, channel error, and congestion are the main causes for packet loss in mobile ad hoc networks. Reducing packet loss typically involves congestion control operating on top of a mobility and failure adaptive routing protocol at the network layer. In the current designs, routing is not congestion-adaptive. Routing may let a congestion happen which is detected by congestion control, but dealing with congestion in this reactive manner results in longer delay and unnecessary packet loss and requires significant overhead if a new route is needed. This problem becomes more visible especially in large-scale transmission of heavy traffic such as multimedia data, where congestion is more probable and the negative impact of packet loss on the service quality is of more significance. We argue that routing should not only be aware of, but also be adaptive to, network congestion. Hence, we propose a routing protocol (CRP) with such properties. Our ns-2 simulation results confirm that CRP improves the packet loss rate and end-to-end delay while enjoying significantly smaller protocol overhead and higher energy efficiency as compared to AODV and DSR

171 citations

Journal ArticleDOI
TL;DR: It is shown that the problem of routing messages in a wireless sensor network so as to maximize network lifetime is NP-hard and an online heuristic is developed, which performs two shortest path computations to route each message, which results in greater lifetime.
Abstract: We show that the problem of routing messages in a wireless sensor network so as to maximize network lifetime is NP-hard. In our model, the online model, each message has to be routed without knowledge of future route requests. We also develop an online heuristic to maximize network lifetime. Our heuristic, which performs two shortest path computations to route each message, is superior to previously published heuristics for lifetime maximization - our heuristic results in greater lifetime and its performance is less sensitive to the selection of heuristic parameters. Additionally, our heuristic is superior on the capacity metric

171 citations

Patent
07 Feb 2007
TL;DR: In this article, a network routing device according to the invention transmits a packet via a second port based upon destination information included in the packet received via a first port referring to a routing table and calculates beforehand a third port which is a transfer destination when a fault occurs in a destination connected to the second port.
Abstract: A network routing device according to the invention transmits a packet via a second port based upon destination information included in the packet received via a first port referring to a routing table. In addition, the network routing device calculates beforehand a third port which is a transfer destination when a fault occurs in a destination connected to the second port. Further, the network routing device holds scenario information including a combination of the second port and the third port and updates the routing table based upon the scenario information when a fault is detected in either of the ports.

171 citations

Journal ArticleDOI
20 Jul 2007
TL;DR: It is demonstrated that in view of recent results in compact routing research, logarithmic scaling on Internet-like topologies is fundamentally impossible in the presence of topology dynamics or topology-independent (flat) addressing, and a fundamental re-examination of assumptions behind routing models and abstractions is needed.
Abstract: The Internet's routing system is facing stresses due to its poor fundamental scaling properties. Compact routing is a research field that studies fundamental limits of routing scalability and designs algorithms that try to meet these limits. In particular, compact routing research shows that shortest-path routing, forming a core of traditional routing algorithms, cannot guarantee routing table (RT) sizes that on all network topologies grow slower than linearly as functions of the network size. However, there are plenty of compact routing schemes that relax the shortest-path requirement and allow for improved, sublinear RT size scaling that is mathematically provable for all static network topologies. In particular, there exist compact routing schemes designed for grids, trees, and Internet-like topologies that offer RT sizes that scale logarithmically with the network size.In this paper, we demonstrate that in view of recent results in compact routing research, such logarithmic scaling on Internet-like topologies is fundamentally impossible in the presence of topology dynamics or topology-independent (flat) addressing. We use analytic arguments to show that the number of routing control messages per topology change cannot scale better than linearly on Internet-like topologies. We also employ simulations to confirm that logarithmic RT size scaling gets broken by topology-independent addressing, a cornerstone of popular locator-identifier split proposals aiming at improving routing scaling in the presence of network topology dynamics or host mobility. These pessimistic findings lead us to the conclusion that a fundamental re-examination of assumptions behind routing models and abstractions is needed in order to find a routing architecture that would be able to scale "indefinitely.

170 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
82% related
Server
79.5K papers, 1.4M citations
82% related
Wireless ad hoc network
49K papers, 1.1M citations
81% related
Wireless network
122.5K papers, 2.1M citations
80% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202327
202268
20214
20204
201912
201833