scispace - formally typeset
Search or ask a question
Topic

Equal-cost multi-path routing

About: Equal-cost multi-path routing is a research topic. Over the lifetime, 10472 publications have been published within this topic receiving 249362 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Results show that the maximum throughput achievable with hot-potato routing can be as low as 25% of that for store-and-forward routing, and that the relative degradation increases as the number of nodes grows larger.
Abstract: The achievable aggregate capacity for a variant of the basic multihop approach in which minimum distance store-and-forward routing is replaced by a hot-potato routing algorithm is determined. With hot-potato routing, all packets simultaneously arriving at a given node and not intended for reception at that node are immediately placed onto the outbound links leaving that node; if two or more packets contend for the same outgoing link to achieve a minimum distance routing, then all but one will be misrouted to links which produce longer paths to the eventual destination. Attention is confined to the development of an analytical methodology for finding the probability distribution of the number of hops with hot potato routing for symmetric networks under uniform traffic load. Results show that the maximum throughput achievable with hot-potato routing can be as low as 25% of that for store-and-forward routing, and that the relative degradation increases as the number of nodes grows larger. This implies that the link speed up needed to produce a significant overall capacity advantage with hot potato should be at least a factor of 10. >

166 citations

Journal ArticleDOI
TL;DR: This paper explicitly considers path selection in the road network as an integrated decision in the time-dependent vehicle routing problem, denoted as path flexibility (PF), and employs a Route-Path approximation method generating near-optimal solutions for the TDVRP–PF under stochastic traffic conditions.
Abstract: Conventionally, vehicle routing problems are defined on a network in which the customer locations and arcs are given. Typically, these arcs somehow represent the distances or expected travel time derived from the underlying road network. When executed, the quality of the solutions obtained from the vehicle routing problem depends largely on the quality of the road network representation. This paper explicitly considers path selection in the road network as an integrated decision in the time-dependent vehicle routing problem, denoted as path flexibility (PF). This means that any arc between two customer nodes has multiple corresponding paths in the road network (geographical graph). Hence, the decisions to make are involving not only the routing decision but also the path selection decision depending upon the departure time at the customers and the congestion levels in the relevant road network. The corresponding routing problem is a time-dependent vehicle routing problem with path flexibility (TDVRP–PF). We formulate the TDVRP–PF models under deterministic and stochastic traffic conditions. We derive important insights, relationships, and solution structures. Based on a representative testbed of instances (inspired on the road network of Beijing), significant savings are obtained in terms of cost and fuel consumption, by explicitly considering path flexibility. Having both path flexibility and time-dependent travel time seems to be a good representation of a wide range of stochasticity and dynamics in the travel time, and path flexibility serves as a natural recourse under stochastic conditions. Exploiting this observation, we employ a Route-Path approximation method generating near-optimal solutions for the TDVRP–PF under stochastic traffic conditions.

166 citations

Journal ArticleDOI
11 Aug 2006
TL;DR: This work conducts extensive measurement that involves both controlled routing updates through two tier-1 ISPs and active probes of a diverse set of end-to-end paths on the Internet and finds that routing changes contribute to end- to-end packet loss significantly.
Abstract: Extensive measurement studies have shown that end-to-end Internet path performance degradation is correlated with routing dynamics. However, the root cause of the correlation between routing dynamics and such performance degradation is poorly understood. In particular, how do routing changes result in degraded end-to-end path performance in the first place? How do factors such as topological properties, routing policies, and iBGP configurations affect the extent to which such routing events can cause performance degradation? Answers to these questions are critical for improving network performance.In this paper, we conduct extensive measurement that involves both controlled routing updates through two tier-1 ISPs and active probes of a diverse set of end-to-end paths on the Internet. We find that routing changes contribute to end-to-end packet loss significantly. Specifically, we study failover events in which a link failure leads to a routing change and recovery events in which a link repair causes a routing change. In both cases, it is possible to experience data plane performance degradation in terms of increased long loss burst as well as forwarding loops. Furthermore, we find that common routing policies and iBGP configurations of ISPs can directly affect the end-to-end path performance during routing changes. Our work provides new insights into potential measures that network operators can undertake to enhance network performance.

166 citations

Journal ArticleDOI
TL;DR: Simulation results show that the EBGR scheme significantly outperforms existing protocols in wireless sensor networks with highly dynamic network topologies and extends to lossy sensor networks to provide energy-efficient routing in the presence of unreliable communication links.
Abstract: Geographic routing is an attractive localized routing scheme for wireless sensor networks (WSNs) due to its desirable scalability and efficiency. Maintaining neighborhood information for packet forwarding can achieve a high efficiency in geographic routing, but may not be appropriate for WSNs in highly dynamic scenarios where network topology changes frequently due to nodes mobility and availability. We propose a novel online routing scheme, called Energy-efficient Beaconless Geographic Routing (EBGR), which can provide loop-free, fully stateless, energy-efficient sensor-to-sink routing at a low communication overhead without the help of prior neighborhood knowledge. In EBGR, each node first calculates its ideal next-hop relay position on the straight line toward the sink based on the energy-optimal forwarding distance, and each forwarder selects the neighbor closest to its ideal next-hop relay position as the next-hop relay using the Request-To-Send/Clear-To-Send (RTS/CTS) handshaking mechanism. We establish the lower and upper bounds on hop count and the upper bound on energy consumption under EBGR for sensor-to-sink routing, assuming no packet loss and no failures in greedy forwarding. Moreover, we demonstrate that the expected total energy consumption along a route toward the sink under EBGR approaches to the lower bound with the increase of node deployment density. We also extend EBGR to lossy sensor networks to provide energy-efficient routing in the presence of unreliable communication links. Simulation results show that our scheme significantly outperforms existing protocols in wireless sensor networks with highly dynamic network topologies.

166 citations

Proceedings ArticleDOI
07 Mar 2004
TL;DR: It is proved that when no more than one link failure notification is suppressed, FIR always finds a loop-free path to a destination if one such path exists, and it is shown that FIR provides better stability and availability than OSPF.
Abstract: Dealing with network failures effectively is a major operational challenge for Internet service providers. Commonly deployed link state routing protocols such as OSPF react to link failures through global (i.e., network-wide) link state advertisements and routing table recomputations, causing significant forwarding discontinuity after a failure. The drawback with these protocols is that they need to trade off routing stability and forwarding continuity. To improve failure resiliency without jeopardizing routing stability, we propose a proactive local rerouting based approach called failure insensitive routing (FIR). The proposed approach prepares for failures using interface-specific forwarding, and upon a failure, suppresses the link state advertisement and instead triggers local rerouting using a backwarding table. In this paper, we prove that when no more than one link failure notification is suppressed, FIR always finds a loop-free path to a destination if one such path exists. We also formally analyze routing stability and network availability under both proactive and reactive approaches, and show that FIR provides better stability and availability than OSPF.

166 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
82% related
Server
79.5K papers, 1.4M citations
82% related
Wireless ad hoc network
49K papers, 1.1M citations
81% related
Wireless network
122.5K papers, 2.1M citations
80% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202327
202268
20214
20204
201912
201833