scispace - formally typeset
Search or ask a question
Topic

Equal-cost multi-path routing

About: Equal-cost multi-path routing is a research topic. Over the lifetime, 10472 publications have been published within this topic receiving 249362 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work describes virtual capacity based routing (vcr), a theoretical scheme based on the notion of virtual capacity of a route, and proposes proportional sticky routing, an easily realizable approximation of vcr, and demonstrates through extensive simulations that adaptive proportional routing is indeed a viable alternative to the global QoS routing approach.
Abstract: Most of the QoS routing schemes proposed so far require periodic exchange of QoS state information among routers, imposing both communication overhead on the network and processing overhead on core routers. Furthermore, stale QoS state information causes the performance of these QoS routing schemes to degrade drastically. In order to circumvent these problems, we focus on localized QoS routing schemes where the edge routers make routing decisions using only local information and thus reducing the overhead at core routers. We first describe virtual capacity based routing (vcr), a theoretical scheme based on the notion of virtual capacity of a route. We then propose proportional sticky routing, an easily realizable approximation of vcr and analyze its performance. We demonstrate through extensive simulations that adaptive proportional routing is indeed a viable alternative to the global QoS routing approach.

121 citations

Journal ArticleDOI
TL;DR: The design principles and state-of-the-art progress in developing survivable routing schemes for shared protection in mesh WDM networks are introduced and iterative two-step-approach, potential backup cost, and maximum likelihood relaxation are discussed in detail.
Abstract: This article introduces the design principles and state-of-the-art progress in developing survivable routing schemes for shared protection in mesh WDM networks. This article first gives an overview of the diverse routing problem for both types of protection in mesh networks, path-base and segment shared protection; then the cost function and link state for performing diverse routing are defined by which the maximum extent of resource sharing can be explored in the complete routing information scenario. Review is conducted on the most recently reported survivable routing schemes along with state-of-the-art progress in diverse routing algorithms for segment shared protection. The following three reported algorithms are discussed in detail: iterative two-step-approach, potential backup cost, and maximum likelihood relaxation.

121 citations

Journal ArticleDOI
TL;DR: This paper focuses on reviewing some of the recently hierarchical-based routing protocols that are developed in the last five years for MWSNs and presents a detailed classification of the reviewed protocols according to the routing approach, control manner, mobile element, mobility pattern, network architecture, clustering attributes, protocol operation, path establishment, communication paradigm, energy model, protocol objectives, and applications.
Abstract: Introducing mobility to Wireless Sensor Networks (WSNs) puts new challenges particularly in designing of routing protocols. Mobility can be applied to the sensor nodes and/or the sink node in the network. Many routing protocols have been developed to support the mobility of WSNs. These protocols are divided depending on the routing structure into hierarchical-based, flat-based, and location-based routing protocols. However, the hierarchical-based routing protocols outperform the other routing types in saving energy, scalability, and extending lifetime of Mobile WSNs (MWSNs). Selecting an appropriate hierarchical routing protocol for specific applications is an important and difficult task. Therefore, this paper focuses on reviewing some of the recently hierarchical-based routing protocols that are developed in the last five years for MWSNs. This survey divides the hierarchical-based routing protocols into two broad groups, namely, classical-based and optimized-based routing protocols. Also, we present a detailed classification of the reviewed protocols according to the routing approach, control manner, mobile element, mobility pattern, network architecture, clustering attributes, protocol operation, path establishment, communication paradigm, energy model, protocol objectives, and applications. Moreover, a comparison between the reviewed protocols is investigated in this survey depending on delay, network size, energy-efficiency, and scalability while mentioning the advantages and drawbacks of each protocol. Finally, we summarize and conclude the paper with future directions.

121 citations

Journal ArticleDOI
TL;DR: An efficient hierarchical routing algorithm that finds a near-optimal route and evaluates it on a large city road network and incorporates the heuristic techniques has been found to be over 50 times faster than a typical shortest path algorithm.
Abstract: The route computation module is one of the most important functional blocks in a dynamic route guidance system. Although various algorithms exist for finding the shortest path, their performance tends to deteriorate as the network size increases. We present an efficient hierarchical routing algorithm that finds a near-optimal route and evaluate it on a large city road network. Solutions provided by the hierarchical routing algorithm are compared with the optimal solutions to analyze and quantify the loss of accuracy. We propose a novel yet simple heuristic to substantially improve the performance of the hierarchical routing algorithm with acceptable loss of accuracy. A network pruning technique has been incorporated into the algorithm to reduce the search space and the correctness of the results is evaluated. The improved hierarchical routing algorithm that incorporates the heuristic techniques has been found to be over 50 times faster than a typical shortest path algorithm.

121 citations

Journal ArticleDOI
TL;DR: This work presents an efficient multipath heuristic (of complexity O(|V|/sup 3/)), which achieves high bandwidth with low delay and proves a simple data scheduling algorithm as implemented at the server, which achieves the theoretical minimum end-to-end delay.
Abstract: The delivery of quality video service often requires high bandwidth with low delay or cost in network transmission. Current routing protocols such as those used in the Internet are mainly based on the single-path approach (e.g., the shortest-path routing). This approach cannot meet the end-to-end bandwidth requirement when the video is streamed over bandwidth-limited networks. In order to overcome this limitation, we propose multipath routing, where the video takes multiple paths to reach its destination(s), thereby increasing the aggregate throughput. We consider both unicast (point-to-point) and multicast scenarios. For unicast, we present an efficient multipath heuristic (of complexity O(|V|/sup 3/)), which achieves high bandwidth with low delay. Given a set of path lengths, we then present and prove a simple data scheduling algorithm as implemented at the server, which achieves the theoretical minimum end-to-end delay. For a network with unit-capacity links, the algorithm, when combined with disjoint-path routing, offers an exact and efficient solution to meet a bandwidth requirement with minimum delay. For multicast, we study the construction of multiple trees for layered video to satisfy the user bandwidth requirements. We propose two efficient heuristics on how such trees can be constructed so as to minimize the cost of their aggregation subject to a delay constraint.

121 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
82% related
Server
79.5K papers, 1.4M citations
82% related
Wireless ad hoc network
49K papers, 1.1M citations
81% related
Wireless network
122.5K papers, 2.1M citations
80% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202327
202268
20214
20204
201912
201833