scispace - formally typeset
Search or ask a question
Topic

Equal-cost multi-path routing

About: Equal-cost multi-path routing is a research topic. Over the lifetime, 10472 publications have been published within this topic receiving 249362 citations.


Papers
More filters
Proceedings ArticleDOI
09 Oct 2006
TL;DR: A new routing algorithm is proposed that reduces the amount of heat produced in the network and uses mechanisms to adapt to topologies with low degree of connectivity and to switch to shortest path routing if a time threshold is exceeded.
Abstract: One of the major applications of sensor networks in near future will be in the area of biomedical research. Implanted biosensor nodes are already being used for various medical applications. These in-vivo sensor networks collect different biometric data and communicate the data to the base station wirelessly. These sensor networks produce heat, as the nodes have to communicate among themselves wirelessly. The rise in temperature of the nodes due to communication should not be very high. A high temperature of the in-vivo nodes for a prolonged period might damage the surrounding tissues. In this paper, we propose a new routing algorithm that reduces the amount of heat produced in the network. In the simple form, the algorithm routes packets to the coolest neighbor without inducing routing loops. In the adaptive form, the algorithm uses mechanisms to adapt to topologies with low degree of connectivity and to switch to shortest path routing if a time threshold is exceeded. The proposed algorithm performs much better in terms of reducing the amount of heat produced, delay and power consumption compared to the shortest hop routing algorithm and a previously proposed Thermal Aware Routing Algorithm (TARA).

121 citations

Proceedings Article
01 Jan 2007
TL;DR: This paper addresses the least-cost opportunistic routing (LCOR) problem: how to assign and prioritize the set of candidate relays at each node for a given destination such that the expected cost of forwarding a packet to the destination is minimized.
Abstract: In opportunistic routing, each node maintains a group of candidate relays to reach a particular destination, and transmits packets to any node in this group. If a single candidate relay receives the packet, it becomes the effective relay to forward the packet further. If no candidate receives the packet, then the current sender re-transmits. If multiple candidates receive the packet, then the link layer chooses a single receiver to be the relay. This choice could be made at random, or it could be driven by information coming from the routing layer, for example to use the best receiver as the relay. This paper addresses the least-cost opportunistic routing (LCOR) problem: how to assign and prioritize the set of candidate relays at each node for a given destination such that the expected cost of forwarding a packet to the destination is minimized. We solve this problem with a distributed algorithm that provably computes the optimal assignment of candidate relays that each node should allow to reach a particular destination. Prior proposals based on single-path routing metrics or geographic coordinates do not explicitly consider this tradeoff, and as a result make choices which are not always optimal.

120 citations

Journal ArticleDOI
TL;DR: This paper presents a first step to understanding conceptual problems in link-disjoint quality of service routing and proposes a heuristic link- Disjoint QoS algorithm that circumvents these problems.
Abstract: SUMMARY The problem of finding link/node-disjoint paths between a pair of nodes in a network has received much attention in the past. This problem is fairly well understood when the links in a network are only specified by a single link weight. However, in the context of quality of service routing, links are specified by multiple link weights and restricted by multiple constraints. Unfortunately, the problem of finding link/node disjoint paths in multiple dimensions faces different conceptual problems. This paper presents a first step to understanding these conceptual problems in link-disjoint quality of service routing and proposes a heuristic link-disjoint QoS algorithm that circumvents these problems. Copyright # 2003 John Wiley & Sons, Ltd.

120 citations

Proceedings ArticleDOI
10 Jun 2014
TL;DR: This work presents a feasible solution for improving the data packet delivery ratio in mobile UWSN by using the greedy opportunistic forwarding to route packets and to move void nodes to new depths to adjust the topology.
Abstract: Efficient protocols for data packet delivery in mobile underwater sensor networks (UWSNs) are crucial to the effective use of this new powerful technology for monitoring lakes, rivers, seas, and oceans. However, communication in UWSNs is a challenging task because of the characteristics of the acoustic channel. In this work, we present a feasible solution for improving the data packet delivery ratio in mobile UWSN. The GEographic and opportunistic routing with Depth Adjustment-based topology control for communication Recovery (GEDAR) over void regions uses the greedy opportunistic forwarding to route packets and to move void nodes to new depths to adjust the topology. Simulation results shown that GEDAR outperforms the baseline solutions in terms of packet delivery ratio, latency and energy per message.

120 citations

Patent
15 Dec 2008
TL;DR: In this article, a system and method for routing an incoming call to a subscriber-selected destination number in accordance with dynamic data concerning the subscriber provided by an address book, a calendar and a presence server is presented.
Abstract: A system and method for routing an incoming call to a subscriber-selected destination number in accordance with dynamic data concerning the subscriber provided by an address book, a calendar and a presence server. A routing system routes the incoming call in accordance with a subscriber-defined routing rule associated with the originating number of the incoming call, as determined from the address book. The routing rule may specify that the incoming call be routed to a destination number associated with the current date and time, as indicated by the calendar. The routing rule may specify, alternatively or in addition thereto, that the incoming call be routed to a destination number associated with a presence-enabled service on which the subscriber is currently active. The subscriber or caller may also be alternatively notified of the routing of the incoming call.

120 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
82% related
Server
79.5K papers, 1.4M citations
82% related
Wireless ad hoc network
49K papers, 1.1M citations
81% related
Wireless network
122.5K papers, 2.1M citations
80% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202327
202268
20214
20204
201912
201833