scispace - formally typeset
Search or ask a question
Topic

Equations of motion

About: Equations of motion is a research topic. Over the lifetime, 33294 publications have been published within this topic receiving 791282 citations. The topic is also known as: equation of motion.


Papers
More filters
01 Jan 1978
TL;DR: In this paper, Newtonian mechanics: experimental facts investigation of the equations of motion, variational principles Lagrangian mechanics on manifolds oscillations rigid bodies, differential forms symplectic manifolds canonical formalism introduction to pertubation theory.
Abstract: Part 1 Newtonian mechanics: experimental facts investigation of the equations of motion. Part 2 Lagrangian mechanics: variational principles Lagrangian mechanics on manifolds oscillations rigid bodies. Part 3 Hamiltonian mechanics: differential forms symplectic manifolds canonical formalism introduction to pertubation theory.

2,944 citations

Journal ArticleDOI
01 Dec 1993-Proteins
TL;DR: Analysis of extended molecular dynamics simulations of lysozyme in vacuo and in aqueous solution reveals that it is possible to separate the configurational space into two subspace: an “essential” subspace containing only a few degrees of freedom and the remaining space in which the motion has a narrow Gaussian distribution and which can be considered as “physically constrained.”
Abstract: Analysis of extended molecular dynamics (MD) simulations of lysozyme in vacuo and in aqueous solution reveals that it is possible to separate the configurational space into two subspaces: (1) an "essential" subspace containing only a few degrees of freedom in which anharmonic motion occurs that comprises most of the positional fluctuations; and (2) the remaining space in which the motion has a narrow Gaussian distribution and which can be considered as "physically constrained." If overall translation and rotation are eliminated, the two spaces can be constructed by a simple linear transformation in Cartesian coordinate space, which remains valid over several hundred picoseconds. The transformation follows from the covariance matrix of the positional deviations. The essential degrees of freedom seem to describe motions which are relevant for the function of the protein, while the physically constrained subspace merely describes irrelevant local fluctuations. The near-constraint behavior of the latter subspace allows the separation of equations of motion and promises the possibility of investigating independently the essential space and performing dynamic simulations only in this reduced space.

2,896 citations

Journal ArticleDOI
01 Feb 1987
TL;DR: A framework for the analysis and control of manipulator systems with respect to the dynamic behavior of their end-effectors is developed, and the unified approach for motion and force control is developed.
Abstract: A framework for the analysis and control of manipulator systems with respect to the dynamic behavior of their end-effectors is developed. First, issues related to the description of end-effector tasks that involve constrained motion and active force control are discussed. The fundamentals of the operational space formulation are then presented, and the unified approach for motion and force control is developed. The extension of this formulation to redundant manipulator systems is also presented, constructing the end-effector equations of motion and describing their behavior with respect to joint forces. These results are used in the development of a new and systematic approach for dealing with the problems arising at kinematic singularities. At a singular configuration, the manipulator is treated as a mechanism that is redundant with respect to the motion of the end-effector in the subspace of operational space orthogonal to the singular direction.

2,849 citations

Journal ArticleDOI
TL;DR: In this paper, a peridynamic formulation for the basic equations of continuum mechanics is proposed, and the propagation of linear stress waves in the new theory is discussed, and wave dispersion relations are derived.
Abstract: Some materials may naturally form discontinuities such as cracks as a result of deformation. As an aid to the modeling of such materials, a new framework for the basic equations of continuum mechanics, called the "peridynamic" formulation, is proposed. The propagation of linear stress waves in the new theory is discussed, and wave dispersion relations are derived. Material stability and its connection with wave propagation is investigated. It is demonstrated by an example that the reformulated approach permits the solution of fracture problems using the same equations either on or off the crack surface or crack tip. This is an advantage for modeling problems in which the location of a crack is not known in advance.

2,842 citations

Journal ArticleDOI
TL;DR: In this article, a numerical method for solving incompressible viscous flow problems is introduced, which uses the velocities and the pressure as variables and is equally applicable to problems in two and three space dimensions.

2,797 citations


Network Information
Related Topics (5)
Boundary value problem
145.3K papers, 2.7M citations
88% related
Nonlinear system
208.1K papers, 4M citations
87% related
Differential equation
88K papers, 2M citations
85% related
Partial differential equation
70.8K papers, 1.6M citations
83% related
Matrix (mathematics)
105.5K papers, 1.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023155
2022470
2021944
20201,045
2019978
2018949