scispace - formally typeset
Search or ask a question
Topic

Equilibrium mode distribution

About: Equilibrium mode distribution is a research topic. Over the lifetime, 928 publications have been published within this topic receiving 14939 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors derived analytical expressions for the performance improvement of long-haul coherent optical communication systems using QSM fibers, taking into account the impact of excess loss and MPI on system performance.
Abstract: We use the power coupled-mode theory to study the interplay between multipath interference (MPI) and differential mode attenuation (DMA) in quasi-single mode (QSM) fibers. The analytical expressions derived assuming two mode propagation in QSM fibers show that MPI scales differently as a function of the span length for low and high DMA. Furthermore, we derive analytical expressions for the performance improvement of long-haul coherent optical communication systems using QSM fibers, taking into account the impact of excess loss and MPI on system performance. From these expressions, we calculate the maximum allowable coupling coefficient for different values of the DMA. We show, for example, that a QSM fiber with an effective area of 250 μm2, a coupling coefficient κ ≤ 6 × 10-4 km-1, and DMA equal to 4 dB/km offers a 1-dB performance advantage over a reference pure silica core single-mode fiber for spans of 100 km.

19 citations

Journal ArticleDOI
TL;DR: The HPW results are very helpful for plasmonic device applications in the fields of low-threshold nanolasers, ultrafast modulators, and optical switches and can be performed even in tens of nanometer sizes of waveguide geometry.
Abstract: We propose a novel plasmonic waveguide structure, which is referred to as a circular hybrid plasmonic waveguide (HPW) and consists of a metal wire covered with low- and high-index dielectric layers. The circular HPW exhibits two distinctly different modes, namely, the strongly localized mode and the extremely low-loss mode. Our numerical calculation demonstrates that the strongly localized mode exhibits 10-4 order scale in normalized mode area and can be performed even in tens of nanometer sizes of waveguide geometry. In the extremely low-loss mode, the HPW exhibits ultra-long propagation distance of more than 103μm that can be achieved by forming the dipole-like hybrid mode and properly adjusting the radius of the metal wire. It is also shown that, even with this long-range propagation, the mode area of the dipole-like hybrid mode can be maintained at subwavelength scale. The simultaneous achievement of a small mode area and ultra-long propagation distance contributes to the ultra-high propagation distance to mode size ratio of the waveguide. The HPW results are very helpful for plasmonic device applications in the fields of low-threshold nanolasers, ultrafast modulators, and optical switches.

19 citations

Journal ArticleDOI
TL;DR: In this article, the leaky mode dispersion characteristics of DTWLP were analyzed and numerically computed using Muller's complex root search algorithm with an aim to define its complex propagation constant behaviour.
Abstract: The leaky mode dispersion characteristics ( ω - β ) of a Dielectric Tube Waveguide Loaded with Plasma (DTWLP) is analytically solved and numerically computed using Muller’s complex root search algorithm with an aim to define its complex propagation constant behaviour. Consequently, complex leaky mode characteristics and its classification as guided mode, reactive mode and antenna mode have been investigated. These modal characteristics reveal wide fundamental antenna mode (TM01) with the variation in plasma density, which can find prospective application in high resolution radar and communication system where “re-tuning” of the antenna to a new frequency or making it electrically invisible is required. A computational cum simulation study is also performed using CST Microwave Studio software, which confirms our analytical findings.

19 citations

Patent
29 May 1997
TL;DR: In this article, two types of multimode optical waveguides having special dip in the refractive index profile of their core providing conditions for propagation of a higher order mode with sharp central peak which field carries considerable part of the mode energy, while the fields of all other modes in the waveguide are mostly concentrated outside of this central peak region.
Abstract: The invention describes two types of multimode optical waveguides having special dip in the refractive index profile of their core providing conditions for propagation of a higher order mode with sharp central peak which field carries considerable part of the mode energy, while the fields of all other modes in the waveguide are mostly concentrated outside of this central peak region. The waveguide of the first type guides the mode only with one central peak while the mode in the waveguide of the second type has also an additional peak at the interface between the waveguide core and cladding providing a possibility to detect any influence on the mode field in its outer region by measuring the signal in the central peak of the mode. The useful properties of these two kinds of modes can be employed for designing new wavelength selective waveguide components for optical communications and sensors applications: an optical waveguide modulator, amplitude and interferometric sensors for different applications, bistable nonlinear components for logic switching and optical memory, wavelength selective chemical sensors of both amplitude and interferometric type, etc. Employing a material exhibiting electro-optical properties provides a possibility of tuning of the components proposed as well as fabrication of the sensors of electric fields.

19 citations

Proceedings ArticleDOI
04 Nov 2010
TL;DR: In this paper, stable MIMO transport of three channels over a two-mode fiber was shown in the presence of fiber bending induced mode coupling, enabled by a new adiabatic mode splitter output coupler.
Abstract: Simulations confirm stable MIMO transport of three channels over a two mode fiber — even in the presence of fiber bending induced mode coupling — enabled by a new adiabatic mode splitter output coupler.

19 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
89% related
Photonic crystal
43.4K papers, 887K citations
86% related
Wavelength
53.9K papers, 806.8K citations
84% related
Resonator
76.5K papers, 1M citations
83% related
Interferometry
58K papers, 824.8K citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235
202212
20218
20205
20191
20183