scispace - formally typeset
Search or ask a question

Showing papers on "Escherichia coli published in 1986"


Journal ArticleDOI
TL;DR: There are several biological systems in which uidA-encoded beta-glucuronidase may be an attractive alternative or complement to previously described gene-fusion markers such as beta-galactosidase or chloramphenicol acetyltransferase.
Abstract: We have developed a gene-fusion system based on the Escherichia coli beta-glucuronidase gene (uidA). The uidA gene has been cloned from E. coli K-12 and its entire nucleotide sequence has been determined. beta-Glucuronidase has been purified to homogeneity and characterized. The enzyme has a subunit molecular weight of 68,200, is very stable, and is easily and sensitively assayed using commercially available substrates. We have constructed gene fusions of the E. coli lacZ promoter and coding region with the coding region of the uidA gene that show beta-glucuronidase activity under lac control. Plasmid vectors have been constructed to facilitate the transfer of the beta-glucuronidase coding region to heterologous control regions, using many different restriction endonuclease cleavage sites. There are several biological systems in which uidA-encoded beta-glucuronidase may be an attractive alternative or complement to previously described gene-fusion markers such as beta-galactosidase or chloramphenicol acetyltransferase.

1,051 citations


Journal ArticleDOI
TL;DR: From the increasing number of reports of eukaryotic polypeptide synthesis in E. coli it is clear that the mode of expression affects not only the efficiency of production, but the nature of the polypePTide product itself.
Abstract: Over the last 13 years, manipulation of DNA in vitro has developed from the transfer of genetic information between prokaryotic organisms (Cohen et al., 1973) to a technology which facilitates efficient and controlled production of proteins in foreign hosts. A significant feature of these developments is the ability to express eukaryotic genes in prokaryotes such as Escherichia coli (Harris, 1983; Wetzel & Goeddel, 1983). The supply of many eukaryotic polypeptides which have potential clinical or industrial use is often limited by their low natural availability. Gene cloning and expression in E. coli can provide a more abundant source of these polypeptides. The mode of gene expression affects the location of the proteins produced. The proteins may either be located in the cytoplasm of E. coli or secreted through the cell membrane. Eukaryotic genes cloned in frame with synthetic or bacterial nucleic acid sequences can be expressed as hybrid products in the cell cytoplasm. Transcription, from bacterial promoters, and translation, yield fusion proteins which include bacterial or synthetic polypeptide sequences in addition to the eukaryotic polypeptide. An alternative approach which locates proteins in the cytoplasm is direct expression, where bacterial promoters and terminators are used in the transcription of the foreign gene alone. In E. coli an ATG, or occasionally a GTG, sequence must precede the gene coding sequence, for translation initiation. Thus the primary products oftranslation possess an N-terminal methionine residue. E. coli possesses enzymes which catalyse the efficient removal of the methionine residues from natural proteins when required, but these enzymes do not work with the same efficiency on recombinant polypeptides and therefore directly expressed proteins may possess an unnatural N-terminal methionine residue. Finally, gene sequences which include a leader or signal sequence cloned in frame with the eukaryotic genes, when transcribed and translated can direct secretion of the eukaryotic polypeptides through the bacterial cell membrane. From the increasing number of reports of eukaryotic polypeptide synthesis in E. coli it is clear that the mode ofexpression affects not only the efficiency ofproduction, but the nature of the polypeptide product itself. In general, recombinant polypeptides accumulate to higher levels of total cell protein when expressed intracellularly than when secreted, but many of the polypeptide products located in the cytoplasm are insoluble and aggregated. The consequent isolation and purification techniques required are the subject of this Review.

905 citations


Journal ArticleDOI
TL;DR: It is concluded that the total absence of SOD in E. coli creates a conditional sensitivity to oxygen.
Abstract: Mu transposons carrying the chloramphenicol resistance marker have been inserted into the cloned Escherichia coli genes sodA and sodB coding for manganese superoxide dismutase (MnSOD) and iron superoxide dismutase (FeSOD) respectively, creating mutations and gene fusions. The mutated sodA or sodB genes were introduced into the bacterial chromosome by allelic exchange. The resulting mutants were shown to lack the corresponding SOD by activity measurements and immunoblot analysis. Aerobically, in rich medium, the absence of FeSOD or MnSOD had no major effect on growth or sensitivity to the superoxide generator, paraquat. In minimal medium aerobic growth was not affected, but the sensitivity to paraquat was increased, especially in the sodA mutant. A sodA sodB double mutant completely devoid of SOD was also obtained. It was able to grow aerobically in rich medium, its catalase level was unaffected and it was highly sensitive to paraquat and hydrogen peroxide; the double mutant was unable to grow aerobically on minimal glucose medium. Growth could be restored by removing oxygen, by providing an SOD-overproducing plasmid or by supplementing the medium with the 20 amino acids. It is concluded that the total absence of SOD in E. coli creates a conditional sensitivity to oxygen.

765 citations


Journal ArticleDOI
TL;DR: Findings indicate that E. coli produces two genetically related but antigenically distinct cytotoxins with similar biologic activities which are proposed to name Shiga-like toxins I and II.
Abstract: Escherichia coli O157:H7 strain 933 contains two distinct toxin-converting phages (933J and 933W). The biologic activities and antigenic relationship between the toxins produced by 933J and 933W lysogens of E. coli K-12, as well as the homology of the genes that encode the two toxins, were examined in this study. The 933J and 933W toxins, like Shiga toxin produced by Shigella dysenteriae type 1, were cytotoxic for the same cell lines, caused paralysis and death in mice, and caused fluid accumulation in rabbit ileal segments. The cytotoxic activity of 933J toxin for HeLa cells was neutralized by anti-Shiga toxin, whereas the activity of 933W toxin was not neutralized by this antiserum. In contrast, an antiserum prepared against E. coli K-12(933W) neutralized 933W toxin but not 933J toxin or Shiga toxin. For E. coli 933, most of the cell-associated cytotoxin was neutralized by anti-Shiga toxin, whereas most of the extracellular cytotoxin was neutralized by anti-933W toxin. However, a mixture of these antisera indicated the presence of both toxins in cell lysates and culture supernatants. Among 50 elevated cytotoxin-producing strains of E. coli, we identified 11 strains isolated from cases of diarrhea, hemorrhagic colitis, or hemolytic uremic syndrome that produced cell-associated cytotoxins which were neutralized by the 933W antitoxin. Southern hybridization studies showed that the cloned toxin structural genes from phage 933J hybridized with DNA from phage 933W under conditions estimated to allow no more than 26% base-pair mismatch. These findings indicate that E. coli produces two genetically related but antigenically distinct cytotoxins with similar biologic activities which we propose to name Shiga-like toxins I and II. Strains of E. coli that produce elevated levels of Shiga-like toxin I or Shiga-like toxin II, or both, have been associated with the clinical syndromes of diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Images

584 citations


Journal ArticleDOI
TL;DR: SMAC medium stool culture is a simple, inexpensive, rapid, and reliable means of detecting E. coli O157:H7, and it is recommended routine use of SMAC medium especially for culturing bloody stools.
Abstract: Escherichia coli serotype O157:H7 is a recently recognized human pathogen associated with hemorrhagic colitis. Unlike most E. coli strains, E. coli O157:H7 does not ferment sorbitol. Therefore, the efficacy of MacConkey agar containing sorbitol (SMAC medium) instead of lactose as a differential medium for the detection of E. coli O157:H7 in stool cultures was determined in comparison with MacConkey agar. The relative frequency of non-sorbitol-fermenting (NSF) organisms other than E. coli O157:H7 in feces was low at 10 to 20% (95% confidence limits), and NSF organisms also occurred mostly in small numbers. In a field trial involving over 1,000 diarrheal stools, E. coli O157:H7 was isolated from 18 stools, all of which were from patients with bloody diarrhea. In every instance, the growth of E. coli O157:H7 on SMAC medium was heavy and occurred in almost pure culture as colorless NSF colonies in contrast to fecal flora, which are mostly sorbitol fermenting and hence appear pink on this medium, whereas on MacConkey agar cultures, the growth of E. coli O157:H7 was indistinguishable from fecal flora. SMAC medium permitted ready recognition of E. coli O157:H7 in stool cultures. Detection of E. coli O157:H7 on SMAC medium had a sensitivity of 100%, a specificity of 85%, and an accuracy of 86%. SMAC medium stool culture is a simple, inexpensive, rapid, and reliable means of detecting E. coli O157:H7, and we recommend routine use of SMAC medium especially for culturing bloody stools.

578 citations


Journal ArticleDOI
TL;DR: Slow growing bacteria became progressively more phenotypically tolerant to beta-lactam antibiotics as the generation time was extended, and all killing rates were a constant function of the bacterial generation time.
Abstract: Summary: Nongrowing bacteria evade the bactericidal activity of βbT-lactam antibiotics. We sought to determine if slow growth rate also alters bactericidal activity. The bactericidal activity of two βbT-lactams on Escherichia coli grown in glucose limited chemostats was compared for generation times ranging from 0·7 to 12 h. The degree of killing varied with drug structure and with E. coli strain. However, all killing rates were a constant function of the bacterial generation time: slowly growing bacteria became progressively more phenotypically tolerant to βbT-lactam antibiotics as the generation time was extended.

494 citations


Journal ArticleDOI
TL;DR: The demonstration that RNase II and polynucleotide phosphorylase (PNPase) are required for cell viability and mRNA turnover in Escherichia coli is demonstrated.
Abstract: The isolation of a temperature-sensitive allele of RNase II (rnb) by in vitro mutagenesis has permitted the demonstration that RNase II and polynucleotide phosphorylase (PNPase) are required for cell viability and mRNA turnover in Escherichia coli. Double-mutant strains carrying the pnp-7 and rnb-500 alleles (PNPase deficient and RNase II thermolabile) ceased growing in Luria broth within 30 min after shift to the nonpermissive temperature. Cessation of growth was accompanied by an accumulation of mRNA fragments 100-1500 nucleotides long. In contrast, single-mutant and wild-type control strains grew normally at the nonpermissive temperature and did not accumulate mRNA. No significant changes in rRNA patterns were observed in any of the strains.

423 citations


Journal ArticleDOI
TL;DR: It is reported here that human macrophages bind Escherichia coli by recognizing bacterial lipopolysaccharide (LPS), and the receptors on macrophage that recognize LPS are identified.
Abstract: We report here that human macrophages bind Escherichia coli by recognizing bacterial lipopolysaccharide (LPS). Purified LPS was inserted into erythrocyte membranes, and the resulting LPS-coated red cells were bound by macrophages with the same temperature and cation dependence as observed for E. coli. When receptors for LPS were withdrawn from the plasma membrane by spreading the macrophages on LPS-coated surfaces, the binding of E. coli was blocked. We have also identified the receptors on macrophages that recognize LPS. Macrophages express three structurally homologous cell surface proteins, CR3, lymphocyte function-associated antigen (LFA-1), and p150,95. We used surface-bound monoclonal antireceptor antibodies to selectively remove these proteins from the apical surface of macrophages. We found that each of these proteins mediated the binding of E. coli to macrophages.

411 citations


Journal ArticleDOI
TL;DR: Results demonstrate that protein A consists of five IgG-binding domains, suggesting that region B as well as region E has Fc-binding activity and the implications for the structure of protein-A--immunoglobulin-G complexes are discussed.
Abstract: A genetic approach is described to clarify the IgG-binding properties of the N-terminal portion of staphylococcal protein A (region E). Several gene fragments, encoding region E or B or protein A, have been cloned and expressed in Escherichia coli. The gene products were purified by IgG-affinity chromatography and subjected to structural and functional analyses. Both fragments can be efficiently purified using this method, suggesting that region B as well as region E has Fc-binding activity. In addition, gene fusions were assembled giving fragments EB and EE, which both showed a divalent Fc-binding. These results demonstrate that protein A consists of five IgG-binding domains. The implications of these findings for the structure of protein-A--immunoglobulin-G complexes are discussed.

376 citations


Journal ArticleDOI
TL;DR: Enzymatic and chemical protection experiments have demonstrated that mutS-encoded protein specifically binds to DNA regions containing a single base-pair mismatch.
Abstract: The Escherichia coli mutS gene product is involved in mismatch correction in this organism. We have purified a biologically active form of the 97,000 Mr protein to near homogeneity from an overproducing strain. Enzymatic and chemical protection ("footprinting") experiments have demonstrated that mutS-encoded protein specifically binds to DNA regions containing a single base-pair mismatch. The protein displayed variable affinity for the limited set of mismatches tested (G-T greater than G-A approximately equal to A-C greater than T-C).

359 citations


Journal ArticleDOI
TL;DR: A novel penicillin-binding protein, PBP-2' (Mr about 75,000), is known to be induced in excessively large amount by most beta-lactam compounds in cells of a clinically isolated strain of Staphylococcus aureus, TK784, that is highly resistant to beta- lactams and also most other antibiotics.
Abstract: A novel penicillin-binding protein, PBP-2' (Mr about 75,000), is known to be induced in excessively large amount by most beta-lactam compounds in cells of a clinically isolated strain of Staphylococcus aureus, TK784, that is highly resistant to beta-lactams and also most other antibiotics. This protein has very low affinities to most beta-lactam compounds and has been supposed to be the cause of the resistance of the cells to beta-lactams. A 14-kilobase DNA fragment was isolated from the cells that carried the gene encoding this penicillin-binding protein and also a genetically linked marker that is responsible for the resistance to tobramycin. This DNA was cloned on plasmid pACYC184 and was shown to cause both production of PBP-2' and resistance to tobramycin in Escherichia coli cells. However, the formation of PBP-2' in E. coli was only moderate and was independent of normal inducer beta-lactams. The PBP-2' formed in the E. coli cells showed slow kinetics of binding to beta-lactams similar to that of PBP-2' formed in the original S. aureus cells and gave a similar pattern of peptides to the latter when digested with the proteolytic V8 enzyme of S. aureus.

Journal ArticleDOI
TL;DR: A shotgun cloning experiment ligated a tetracycline resistance determinant from Streptococcus sanguis chromosomal DNA into pAM401 by direct transformation of S. faecalis, establishing the utility of the protoplast transformation system and of the new shuttle vector.
Abstract: A highly efficient protoplast transformation system for Streptococcus faecalis has been developed by systematically optimizing different parameters. Up to 10(6) transformants per micrograms of DNA were consistently obtained within 3 days, and cell wall regeneration of protoplasts was virtually 100%. A systematic search for useful vectors showed that the broad-host-range plasmid pIP501 could transform S. faecalis at a high frequency (6.3 X 10(4) transformants per microgram). By combining a high-copy-number derivative of pIP501, designated pGB354, with the Escherichia coli vector pACYC184, we constructed a new E. coli-S. faecalis shuttle vector (pAM401) having nine unique restriction sites. In a shotgun cloning experiment, we ligated a tetracycline resistance determinant from Streptococcus sanguis chromosomal DNA into pAM401 by direct transformation of S. faecalis, establishing the utility of the protoplast transformation system and of the new shuttle vector.

Journal ArticleDOI
TL;DR: It is observed that plasmids containing certain cloned modification methylase genes of type II restriction-modification systems cannot be transformed into many laboratory strains of Escherichia coli K-12, and DNA containing 5-methylcytosine is biologically restricted by these strains, while DNA containing 6-methyladenine is not.
Abstract: We have observed that plasmids containing certain cloned modification methylase genes of type II restriction-modification systems cannot be transformed into many laboratory strains of Escherichia coli K-12. The investigation of this phenomenon, reported here, has revealed (i) DNA containing 5-methylcytosine is biologically restricted by these strains, while DNA containing 6-methyladenine is not; (ii) restriction is due to two genetically distinct systems that differ in their sequence specificities, which we have named mcrA and mcrB (for modified cytosine restriction). Since 5-methylcytosine containing DNA is widespread in nature, the Mcr systems probably have a broad biological role. Mcr restriction may seriously interfere with molecular cloning of 5-methylcytosine-containing foreign DNAs. The Mcr phenotypes of some commonly used strains of E. coli K-12 are reported.

Journal ArticleDOI
TL;DR: Overlapping peptides together covering the entire tetanus toxin molecule were synthesized in Escherichia coli and identified by monoclonal antibodies, indicating that the neurotoxins from C. tetani and C. botulinum are derived from a common ancestral gene.
Abstract: A pool of synthetic oligonucleotides was used to identify the gene encoding tetanus toxin on a 75-kbp plasmid from a toxigenic non-sporulating strain of Clostridium tetani. The nucleotide sequence contained a single open reading frame coding for 1315 amino acids corresponding to a polypeptide with a mol. wt of 150,700. In the mature toxin molecule, proline (2) and serine (458) formed the N termini of the 52,288 mol. wt light chain and the 98,300 mol. wt heavy chain, respectively. Cysteine (467) was involved in the disulfide linkage between the two subchains. The amino acid sequences of the tetanus toxin revealed striking homologies with the partial amino acid sequences of botulinum toxins A, B, and E, indicating that the neurotoxins from C. tetani and C. botulinum are derived from a common ancestral gene. Overlapping peptides together covering the entire tetanus toxin molecule were synthesized in Escherichia coli and identified by monoclonal antibodies. The promoter of the toxin gene was localized in a region extending 322 bp upstream from the ATG codon and was shown to be functional in E. coli.

Journal ArticleDOI
TL;DR: A method for rapidly generating thermostable enzyme variants is developed, applicable to other enzymatic activities that are selectable in thermophiles or that can be screened for by plate assays.
Abstract: We developed a method for rapidly generating thermostable enzyme variants. Our strategy is to introduce the gene coding for a given enzyme from a mesophilic organism into a thermophile, Bacillus stearothermophilus. Variants that retain the enzymatic activity at the higher growth temperatures of the thermophile are then selected. This strategy was applied to kanamycin nucleotidyltransferase, which confers resistance to the antibiotic kanamycin. B. stearothermophilus carrying the wild-type enzyme is resistant to the antibiotic at 47 degrees C but not at 55 degrees C and above. Variants that were kanamycin resistant at 63 degrees C were obtained by selection of spontaneous mutants, by passage of a shuttle plasmid through the Escherichia coli mutD5 mutator strain and introduction into B. stearothermophilus by transformation, and by growing the thermophile in a chemostat. The kanamycin nucleotidyltransferases purified from these variants were all more resistant to irreversible thermal inactivation than is the wild-type enzyme, and all have the same single amino acid replacement, aspartate to tyrosine at position 80. Mutants that are even more heat stable were derived from the first variant by selecting for kanamycin resistance at 70 degrees C, and these carry the additional change of threonine to lysine at position 130. This strategy is applicable to other enzymatic activities that are selectable in thermophiles or that can be screened for by plate assays.

Journal ArticleDOI
H Aoki, T Shiroza, M Hayakawa, S Sato, H K Kuramitsu 
TL;DR: Results indicate that the gtfB gene codes for a GTF involved in insoluble glucan synthesis in strain GS-5, and evidence for the existence of a distinct gene sharing partial homology with gTFB was obtained.
Abstract: The gtfB gene coding for a glucosyltransferase (GTF) activity of Streptococcus mutans GS-5 was isolated on a 15.4-kilobase DNA fragment by using a lambda L47.1 gene library. The activity was catalyzed by gene products of 150 and 145 kilodaltons which reacted with antibodies directed against both soluble and insoluble glucan-synthesizing GTFs. The enzyme present in crude Escherichia coli extracts synthesized both soluble and insoluble glucans. The enzyme was partially purified from lysates of the lambda DS-76 clone and synthesized both types of glucans in a primer-independent fashion. In addition, the purified enzyme exhibited a pI of approximately 5.0. Southern blot analysis indicated that the cloned GTF gene represented a contiguous nucleotide sequence on the strain GS-5 chromosome. Furthermore, evidence for the existence of a distinct gene sharing partial homology with gtfB was also obtained. The gtfB gene was subcloned into plasmid pACYC184 into E. coli and exhibited GTF activity when carried on GS-5 inserts as small as 5 kilobases. The approximate location of the GTF promoter and the direction of gene transcription were also determined. The cloned enzyme was not secreted through the cytoplasmic membrane of E. coli, since most of the activity was found in the cytoplasm and, in lesser amounts, associated with the cytoplasmic membrane. The gtfB gene was insertionally inactivated by introducing a gene fragment coding for erythromycin resistance into the GTF coding region. After transformation of strain GS-5 with the altered gene, transformants defective in insoluble glucan synthesis were identified. These results indicate that the gtfB gene codes for a GTF involved in insoluble glucan synthesis in strain GS-5. Images

Journal ArticleDOI
TL;DR: DNA fragments cloned from Escherichia coli KL-16 and from spontaneous nalidixic acid-resistant mutants indicate that mutations in the gyrB gene are responsible for nalidIXic acid resistance.
Abstract: DNA fragments of 3.4 kb containing the gyrB gene were cloned from Escherichia coli KL-16 and from spontaneous nalidixic acid-resistant mutants. The mutations (nal-24 and nal-31) had been determined to be in the gyrB gene by transduction analysis. Nucleotide sequence analysis of the cloned DNA fragments revealed that nal-24 was a G to A transition at the first base of the 426th codon of the gyrB gene, resulting in an amino acid change from aspartic acid to asparagine, and nal-31 was an A to G transition at the first base of the 447th codon, resulting in an amino acid change from lysine to glutamic acid. This indicates that mutations in the gyrB gene are responsible for nalidixic acid resistance.

Journal ArticleDOI
TL;DR: It is demonstrated that aerobactin is an essential factor of pathogenicity in K. pneumoniae and transfer of the recombinant plasmid pKP4 into an avirulent recipient enhanced virulence by 100-fold.
Abstract: Nine isolates of Klebsiella pneumoniae belonging to capsular serotypes K1 and K2 were assayed for virulence in mice. Virulent isolates (50% lethal dose of less than 10(3) microorganisms) and avirulent isolates (50% lethal dose of over 10(6) microorganisms) were selected. Supplementation of a defined minimal medium with transferrin markedly reduced the growth of avirulent strains but had no significant effect on the growth of virulent strains. All isolates produced enterochelin, but only production of aerobactin could be correlated with virulence. The genes encoding aerobactin and its receptor protein were located on a 180-kilobase plasmid. They were cloned into the mobilizable vector pSUP202. Homology was demonstrated with the aerobactin operon of the Escherichia coli plasmid pColV-K30. Transfer of the recombinant plasmid pKP4 into an avirulent recipient enhanced virulence by 100-fold. These experiments demonstrated that aerobactin is an essential factor of pathogenicity in K. pneumoniae.

Journal ArticleDOI
03 Jan 1986-Science
TL;DR: A general role for periplasmic oligosaccharides in the osmotic adaptation of Gram-negative bacteria as ecologically diverse as enteric and soil bacteria is suggested.
Abstract: The cyclic (1----2)-beta-D-glucans produced by species of Agrobacterium and Rhizobium resemble the membrane-derived oligosaccharides of Escherichia coli in their periplasmic localization, intermediate size, and (1----2)-beta-D-glucan backbones. The regulation of the biosynthesis of cyclic (1----2)-beta-D-glucan by Agrobacterium tumefaciens is now shown to parallel the osmotic regulation of membrane-derived oligosaccharide biosynthesis in Escherichia coli. This result suggests a general role for periplasmic oligosaccharides in the osmotic adaptation of Gram-negative bacteria as ecologically diverse as enteric and soil bacteria.

Journal ArticleDOI
TL;DR: The pcnB mutant strain of Escherichia coli should be useful for cloning genes into pBR322 that have aberrant or deleterious effects on the cell when present in high copy number.
Abstract: We describe mutants of Escherichia coli that decrease the plasmid copy number of pBR322 derivatives. One mutant was partially characterized genetically and its mutation, designated pcnB for plasmid copy number, was mapped to approximately 3 min on the E. coli chromosome. This locus is distinct from other genes whose products are known to affect plasmid replication or stable plasmid maintenance. The pcnB mutant strain should be useful for cloning genes into pBR322 that have aberrant or deleterious effects on the cell when present in high copy number.

Journal ArticleDOI
TL;DR: The ability to easily purify 1 g of SSB protein from 300-350 g of induced cells will facilitate physical studies requiring large quantities of this important protein, which is essential for replication, recombination, and repair processes in E. coli.
Abstract: We report a rapid procedure for the large-scale purification of the Escherichia coli encoded single-strand binding (SSB) protein, helix-destabilizing protein which is essential for replication, recombination, and repair processes in E. coli. To facilitate the isolation of large quantities of the ssb gene product, we have subcloned the ssb gene into a temperature-inducible expression vector, pPLc28 [Remaut, E., Stanssens, P., & Fiers, W. (1981) Gene 15, 81-93], carrying the bacteriophage lambda PL promoter. A large overproduction of the ssb gene product results upon shifting the temperature of E. coli strains which carry the plasmid and also produce the thermolabile lambda cI857 repressor. After 5 h of induction, the ssb gene product represents approximately 10% of the total cell protein. The overexpression of the ssb gene and the purification protocol reported here enable one to isolate SSB protein (greater than 99% pure) with final yields of approximately 3 mg of SSB protein/g of cell paste. In fact, very pure (greater than 99%) SSB protein can be obtained after approximately 8 h, starting from frozen cells in the absence of any columns, although inclusion of a single-stranded DNA-cellulose column is generally recommended to ensure that the purified SSB protein possesses DNA binding activity. The ability to easily purify 1 g of SSB protein from 300-350 g of induced cells will facilitate physical studies requiring large quantities of this important protein.

Journal ArticleDOI
TL;DR: The streptococcal plasmid pMV158 and its derivative pLS1 are able to replicate and confer tetracycline resistance in both Gram-positive and Gram-negative bacteria and were highly homologous to tet genes in two other plasmids of Gram- positive origin but different in both sequence and mode of regulation.

Journal ArticleDOI
TL;DR: It appears that the two discrete bacterial plasmids from parathion-hydrolyzing soil bacteria possess a common but limited region of sequence homology within potentially nonhomologous plasmid structures.
Abstract: Parathion hydrolases have been previously described for an American isolate of Pseudomonas diminuta and a Philippine isolate of Flavobacterium sp. (ATCC 27551). The gene which encodes the broad-spectrum organophosphate phosphotriesterase in P. diminuta has been shown by other investigators to be located on a 66-kilobase (kb) plasmid. The intact gene (opd, organophosphate-degrading gene) from this degradative plasmid was cloned into M13mp10 and found to express parathion hydrolase under control of the lac promoter in Escherichia coli. In Flavobacterium sp. strain ATCC 27551, a 43-kb plasmid was associated with the production of parathion hydrolase by curing experiments. The M13mp10-cloned fragment of the opd gene from P. diminuta was used to identify a homologous genetic region from Flavobacterium sp. strain ATCC 27551. Southern hybridization experiments demonstrated that a genetic region from the 43-kb Flavobacterium sp. plasmid possessed significant homology to the opd sequence. Similar hybridization did not occur with three other native Flavobacterium sp. plasmids (approximately 23, 27, and 51 kb) present within this strain or with genomic DNA from cured strains. Restriction mapping of various recombinant DNA molecules containing subcloned fragments of both opd plasmids revealed that the restriction maps of the two opd regions were similar, if not identical, for all restriction endonucleases tested thus far. In contrast, the restriction maps of the cloned plasmid sequences outside the opd regions were not similar. Thus, it appears that the two discrete bacterial plasmids from parathion-hydrolyzing soil bacteria possess a common but limited region of sequence homology within potentially nonhomologous plasmid structures.

Journal ArticleDOI
TL;DR: In Escherichia coli the frequency of spontaneous single-step mutation to high levels of resistance to the newer 4-quinolone agent norfloxacin was confirmed to be over 300-fold lower than that to the older agent nalidixic acid.
Abstract: In Escherichia coli the frequency of spontaneous single-step mutation to high levels of resistance to the newer 4-quinolone agent norfloxacin was confirmed to be over 300-fold lower than that to the older agent nalidixic acid. Serial passage on incremental concentrations of drug was necessary to produce mutants highly resistant to norfloxacin. Genetic analysis of one such highly resistant strain identified two mutations conferring drug resistance. One mutation, nfxA, mapped around 48 min on the E. coli genetic map and was shown to be an allele of gyrA by studies demonstrating an increased drug resistance of DNA gyrase reconstituted with the gyrase A subunit isolated from the mutant strain. These findings also identified the DNA gyrase A subunit as a target of norfloxacin. The second mutation, nfxB, mapped between 20 and 22 min was associated with additional resistances to tetracycline, chloramphenicol, and cefoxitin and with decreases in outer membrane porin protein OmpF. The nfxA and nfxB mutations together accounted for most, but not all, of the norfloxacin resistance phenotype of this strain.

Journal Article
TL;DR: Recombinant IL 1 is capable of stimulating T cell and fibro Blast proliferation and inducing fibroblast collagenase and prostaglandin production, thus proving that a single molecule has many of the activities previously ascribed to only partially purified IL 1 preparations.
Abstract: Interleukin 1 (IL 1) is a polypeptide hormone produced by activated macrophages that affects many different cell types involved in immune and inflammatory responses. The cloning and expression of a murine IL 1 cDNA in Escherichia coli encoding a polypeptide precursor of 270 amino acids has been reported, and expression of the carboxy-terminal 156 amino acids of this precursor in E. coli yields biologically active IL 1. By using the murine IL 1 cDNA as a probe, we have isolated its human homolog from cDNA generated to lipopolysaccharide-stimulated human leukocyte mRNA. Nucleotide sequence analysis of this cDNA predicts a protein of analysis of this cDNA predicts a protein of 271 amino acids (termed IL 1 alpha) which shows congruent to 61% homology to its murine counterpart but only 27% homology to a recently characterized human IL 1 precursor (IL 1 beta). We have expressed the carboxy-terminal 154 amino acids of IL 1 alpha in E. coli, purified this protein to homogeneity, and have compared it with pure recombinant murine IL 1 in several different IL 1 assays based on murine and human cells. Recombinant IL 1 is capable of stimulating T cell and fibroblast proliferation and inducing fibroblast collagenase and prostaglandin production, thus proving that a single molecule has many of the activities previously ascribed to only partially purified IL 1 preparations. Our results indicate that there exists a family of at least two human IL 1 genes (alpha and beta) whose dissimilar protein products have similar biological activities.


Journal ArticleDOI
TL;DR: The results support the existence of a biosynthetic pathway in which aerobactin arises by oxygenation of lysine, acetylation of the N epsilon-hydroxy function, and condensation of 2 mol of the resulting aminohydroxamic acid with citric acid.
Abstract: The iron-regulated aerobactin operon, about 8 kilobase pairs in size, of the Escherichia coli plasmid ColV-K30 was shown by deletion and subcloning analyses to consist of at least five genes for synthesis (iuc, iron uptake chelate) and transport (iut, iron uptake transport) of the siderophore. The gene order iucABCD iutA was established. The genes were mapped within restriction nuclease fragments of a cloned 16.3-kilobase-pair HindIII fragment. Stepwise deletion and subsequent minicell analysis of the resulting plasmids allowed assignment of four of the five genes to polypeptides of molecular masses 63,000, 33,000 53,000, and 74,000 daltons, respectively. The 74-kilodalton protein, the product of gene iutA, is the outer membrane receptor for ferric aerobactin, whereas the remaining three proteins are involved in biosynthesis of aerobactin. The 33-kilodalton protein, the product of gene iucB, was identified as N epsilon-hydroxylysine:acetyl coenzyme A N epsilon-transacetylase (acetylase) by comparison of enzyme activity in extracts from various deletion mutants. The 53-kilodalton protein, the product of gene iucD, is required for oxygenation of lysine. The 63-kilodalton protein, the product of gene iucA, is assigned to the first step of the aerobactin synthetase reaction. The product of gene iucC, so far unidentified, performs the second and final step in this reaction. This is based on the chemical characterization of two precursor hydroxamic acids (N epsilon-acetyl-N epsilon-hydroxylysine and N alpha-citryl-N epsilon-acetyl-N epsilon-hydroxylysine) isolated from a strain carrying a 0.3-kilobase-pair deletion in the iucC gene. The results support the existence of a biosynthetic pathway in which aerobactin arises by oxygenation of lysine, acetylation of the N epsilon-hydroxy function, and condensation of 2 mol of the resulting aminohydroxamic acid with citric acid.


Journal ArticleDOI
TL;DR: The small subunit of iron‐dependent ribonucleotide reductases contains a stable organic free radical, which is essential for enzyme activity and which is localized to a tyrosine residue, which identifies Tyr122 of E. coli protein B2 as the tyrosyl radical residue.
Abstract: The small subunit of iron-dependent ribonucleotide reductases contains a stable organic free radical, which is essential for enzyme activity and which is localized to a tyrosine residue. Tyrosine-122 in the B2 subunit of Escherichia coli ribonucleotide reductase has been changed into a phenylalanine. The mutation was introduced with oligonucleotide-directed mutagenesis in an M13 recombinant and verified by DNA sequencing. Purified native and mutant B2 protein were found to have the same size, iron content and iron-related absorption spectrum. The sole difference observed is that the mutant protein lacks tyrosyl radical and enzymatic activity. These results identify Tyr122 of E. coli protein B2 as the tyrosyl radical residue. An expression vector was constructed for manipulation and expression of ribonucleotide reductase subunits. It contains the entire nrd operon with its own promoter in a 2.3-kb fragment from pBR322. Both the B1 and the B2 subunits were expressed at a 25-35 times higher level as compared to the host strain.

Journal ArticleDOI
TL;DR: Both NorB and NorC mutants had a lower rate of norfloxacin uptake, and it was found that the NorB mutant was altered in OmpF porin and that theNorC mutant was alteration in both Ompf porinand apparently in the lipopolysaccharide structure of the outer membrane.
Abstract: We isolated spontaneous mutants from Escherichia coli K-12 with low-level resistance to norfloxacin. These mutants were classified into the following three types on the basis of their properties: (i) NorA appeared to result for mutation in the gyrA locus for the A subunit of DNA gyrase; (ii) NorB showed low-level resistance to quinolones and other antimicrobial agents (e.g., cefoxitin, chloramphenicol, and tetracycline), and the norB gene was considered to map at about 34 min on the E. coli K-12 chromosome; (iii) NorC was less susceptible to norfloxacin and ciprofloxacin but was hypersusceptible to hydrophobic quinolones such as nalidixic acid and rosoxacin, hydrophobic antibiotics, dyes, and detergents. Susceptibility to bacteriophages and the hydrophobicity of the NorC cell surface also differed from that of the parent strain. The norC gene was located near the lac locus at 8 min on the E. coli K-12 chromosome. Both NorB and NorC mutants had a lower rate of norfloxacin uptake, and it was found that the NorB mutant was altered in OmpF porin and that the NorC mutant was altered in both OmpF porin and apparently in the lipopolysaccharide structure of the outer membrane.