scispace - formally typeset
Search or ask a question
Topic

Escherichia coli

About: Escherichia coli is a research topic. Over the lifetime, 59041 publications have been published within this topic receiving 2050337 citations. The topic is also known as: E. coli & E coli jdj.


Papers
More filters
Journal ArticleDOI
03 Feb 2005-Nature
TL;DR: Insight is provided into the function of previously uncharacterized bacterial proteins and the overall topology of a microbial interaction network, the core components of which are broadly conserved across Prokaryota.
Abstract: Proteins often function as components of multi-subunit complexes. Despite its long history as a model organism, no large-scale analysis of protein complexes in Escherichia coli has yet been reported. To this end, we have targeted DNA cassettes into the E. coli chromosome to create carboxy-terminal, affinity-tagged alleles of 1,000 open reading frames (approximately 23% of the genome). A total of 857 proteins, including 198 of the most highly conserved, soluble non-ribosomal proteins essential in at least one bacterial species, were tagged successfully, whereas 648 could be purified to homogeneity and their interacting protein partners identified by mass spectrometry. An interaction network of protein complexes involved in diverse biological processes was uncovered and validated by sequential rounds of tagging and purification. This network includes many new interactions as well as interactions predicted based solely on genomic inference or limited phenotypic data. This study provides insight into the function of previously uncharacterized bacterial proteins and the overall topology of a microbial interaction network, the core components of which are broadly conserved across Prokaryota.

1,175 citations

Journal ArticleDOI
TL;DR: Progress in the understanding of several biological processes promises to broaden the usefulness of Escherichia coli as a tool for gene expression and the remarkable increase in the availability of fusion partners offers a wide range of tools for improved protein folding, solubility, protection from proteases, yield, and secretion into the culture medium.

1,156 citations

Journal ArticleDOI
TL;DR: A cytotoxin was found in culture filtrates of a number of Escherichia coli strains that differed from the known heat-stable and heat-labile enterotoxins of E. coli.
Abstract: A cytotoxin was found in culture filtrates of a number of Escherichia coli strains that differed from the known heat-stable and heat-labile enterotoxins of E. coli. It was cytotoxic for Vero but not for Y-1 or CHO cells, and its effect on Vero was distinctly different from that of heat-labile enterotoxin. It was labile to heat and antigenically different from heat-labile enterotoxin, and membrane filtration indicated a molecular weight of 10,000 to 30,000.

1,149 citations

Journal ArticleDOI
TL;DR: The ability of enteropathogenic Escherichia coli to form attaching and effacing intestinal lesions is a major characteristic of EPEC pathogenesis and a chromosomal gene (eae) that is necessary for this activity is identified using TnphoA mutagenesis.
Abstract: The ability of enteropathogenic Escherichia coli (EPEC) to form attaching and effacing intestinal lesions is a major characteristic of EPEC pathogenesis. Using TnphoA mutagenesis we have identified a chromosomal gene (eae, for E. coli attaching and effacing) that is necessary for this activity. A DNA probe derived from this gene hybridizes to 100% of E. coli of EPEC serogroups that demonstrate attaching and effacing activity on tissue culture cells as well as other pathogenic E. coli that produce attaching and effacing intestinal lesions, such as RDEC-1 (an EPEC of weanling rabbits) and enterohemorrhagic E. coli. The predicted amino acid sequence derived from the nucleotide sequence of eae shows significant homology to that of the invasin of Yersinia pseudotuberculosis.

1,141 citations

Journal ArticleDOI
TL;DR: Two multiplex PCR assays for the detection and genetic characterization of STEC in cultures of feces or foodstuffs detected STEC of the appropriate genotype in primary fecal cultures from five patients with hemolytic-uremic syndrome and three with bloody diarrhea.
Abstract: Shiga toxigenic Escherichia coli (STEC) comprises a diverse group of organisms capable of causing severe gastrointestinal disease in humans. Within the STEC family, certain strains appear to be of greater virulence for humans, for example, those belonging to serogroups O111 and O157 and those with particular combinations of other putative virulence traits. We have developed two multiplex PCR assays for the detection and genetic characterization of STEC in cultures of feces or foodstuffs. Assay 1 utilizes four PCR primer pairs and detects the presence of stx1, stx2 (including variants of stx2), eaeA, and enterohemorrhagic E. coli hlyA, generating amplification products of 180, 255, 384, and 534 bp, respectively. Assay 2 uses two primer pairs specific for portions of the rfb (O-antigen-encoding) regions of E. coli serotypes O157 and O111, generating PCR products of 259 and 406 bp, respectively. The two assays were validated by testing 52 previously characterized STEC strains and observing 100% agreement with previous results. Moreover, assay 2 did not give a false-positive O157 reaction with enteropathogenic E. coli strains belonging to clonally related serogroup O55. Assays 1 and 2 detected STEC of the appropriate genotype in primary fecal cultures from five patients with hemolytic-uremic syndrome and three with bloody diarrhea. Thirty-one other primary fecal cultures from patients without evidence of STEC infection were negative.

1,102 citations


Network Information
Related Topics (5)
Plasmid
44.3K papers, 1.9M citations
93% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
89% related
Nucleic acid sequence
41.6K papers, 1.9M citations
88% related
Peptide sequence
84.1K papers, 4.3M citations
88% related
Mutant
74.5K papers, 3.4M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20232,609
20225,796
20211,236
20201,337
20191,412