scispace - formally typeset
Search or ask a question
Topic

Escherichia coli

About: Escherichia coli is a research topic. Over the lifetime, 59041 publications have been published within this topic receiving 2050337 citations. The topic is also known as: E. coli & E coli jdj.


Papers
More filters
Journal ArticleDOI

328 citations

Journal ArticleDOI
05 Feb 1982-Science
TL;DR: Escherichia coli that has been genetically manipulated by recombinant DNA technology to synthesize human insulin polypeptides (A chain, B chain, or proinsulin) contains prominent cytoplasmic inclusion bodies.
Abstract: Escherichia coli that has been genetically manipulated by recombinant DNA technology to synthesize human insulin polypeptides (A chain, B chain, or proinsulin) contains prominent cytoplasmic inclusion bodies. The amount of inclusion product within the cells corresponds to the quantity of chimeric protein formed by the bacteria. At peak production, the inclusion bodies may occupy as much as 20 percent of the Escherichia coli cellular volume.

328 citations

Journal ArticleDOI
TL;DR: Temperature-sensitive nalA mutants of Escherichia coli have been used to investigate the structure and functions of deoxyribonucleic acid (DNA) gyrase, proving definitively that n alA is the structural gene for subunit A and the nalidixic acid target are one and the same protein.
Abstract: Temperature-sensitive nalA mutants of Escherichia coli have been used to investigate the structure and functions of deoxyribonucleic acid (DNA) gyrase. Extracts of one such mutant (nalA43) had thermosensitive DNA gyrase subunit A activity but normal gyrase subunit B activity, proving definitively that nalA is the structural gene for subunit A. Extracts of a second nalA (Ts) mutant (nalA45) had a 50-fold deficiency of gyrase subunit A activity. The residual DNA supertwisting was catalyzed by the mutant DNA gyrase rather than by a novel supertwisting enzyme. The nalA45(Ts) extract was also deficient in the nalidixic acid target, which is defined as the protein necessary to confer drug sensitivity to in vitro DNA replication directed by a nalidixic acid-resistant mutant extract. Thus, gyrase subunit A and the nalidixic acid target are one and the same protein, the nalA gene product. Shift of the nalA43(Ts) mutant to a nonpermissive temperature resulted in a precipitous decline in the rate of [(3)H]thymidine incorporation, demonstrating an obligatory role of the nalA gene product in DNA replication. The rates of incorporation of [(3)H]uridine pulses and continuously administered [(3)H]uracil were quickly reduced approximately twofold upon temperature shift of the nalA43(Ts) mutant, and therefore some but not all transcription requires the nalA gene product. The thermosensitive growth of bacteriophages phiX174 and T4 in the nalA43(Ts) host shows that these phages depend on the host nalA gene product. In contrast, the growth of phage T7 was strongly inhibited by nalidixic acid but essentially unaffected by the nalA43(Ts) mutation. The inhibition of T7 growth by nalidixic acid was, however, eliminated by temperature inactivation of the nal43 gene product. Therefore, nalidixic acid may block T7 growth by a corruption rather than a simple elimination of the nalidixic acid target. Possible mechanisms for such a corruption are considered, and their relevance to the puzzling dominance of drug sensitivity is discussed.

328 citations

Journal ArticleDOI
TL;DR: The unique features of the cspA gene are applied to develop a series of expression vectors, termed pCold vectors, that drive the high expression of cloned genes upon induction by cold-shock, and are highly complementary to the widely used pET vectors.
Abstract: Overexpression of proteins in Escherichia coli at low temperature improves their solubility and stability. Here, we apply the unique features of the cspA gene to develop a series of expression vectors, termed pCold vectors, that drive the high expression of cloned genes upon induction by cold-shock. Several proteins were produced with very high yields, including E. coli EnvZ ATP-binding domain (EnvZ-B) and Xenopus laevis calmodulin (CaM). The pCold vector system can also be used to selectively enrich target proteins with isotopes to study their properties in cell lysates using NMR spectroscopy. We have cloned 38 genes from a range of prokaryotic and eukaryotic organisms into both pCold and pET14 (ref. 3) systems, and found that pCold vectors are highly complementary to the widely used pET vectors.

328 citations


Network Information
Related Topics (5)
Plasmid
44.3K papers, 1.9M citations
93% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
89% related
Nucleic acid sequence
41.6K papers, 1.9M citations
88% related
Peptide sequence
84.1K papers, 4.3M citations
88% related
Mutant
74.5K papers, 3.4M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20232,609
20225,796
20211,236
20201,337
20191,412