scispace - formally typeset
Search or ask a question
Topic

Escherichia coli

About: Escherichia coli is a research topic. Over the lifetime, 59041 publications have been published within this topic receiving 2050337 citations. The topic is also known as: E. coli & E coli jdj.


Papers
More filters
Journal ArticleDOI
TL;DR: This review will compare properties of the three toxin prototypes, highlighting the similarities and also the differences in their structure, mode of binding, mechanism of pore formation, and the responses they elicit in target cells.
Abstract: Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin are well-studied prototypes of pore-forming bacterial cytotoxins. Each is produced as a water-soluble single-chain polypeptide that inserts into target membranes to form aqueous transmembrane pores. This review will compare properties of the three toxin prototypes, highlighting the similarities and also the differences in their structure, mode of binding, mechanism of pore formation, and the responses they elicit in target cells. Pore-forming toxins represent the most potent and versatile weapons with which invading microbes damage the host macroorganism.

297 citations

Journal ArticleDOI
TL;DR: Immunoblot analysis of intact and lysed, proteinase K-treated vesicles demonstrate that Shiga toxins 1 and 2 are contained within vesicle, and transfer experiments demonstrate thatvesicles can deliver genetic material to other gram-negative organisms.
Abstract: Membrane vesicles released by Escherichia coli O157:H7 into culture medium were purified and analyzed for protein and DNA content. Electron micrographs revealed vesicles that are spherical, range in size from 20 to 100 nm, and have a complete bilayer. Analysis of vesicle protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrates vesicles that contain many proteins with molecular sizes similar to outer membrane proteins and a number of cellular proteins. Immunoblot (Western) analysis of vesicles suggests the presence of cell antigens. Treatment of vesicles with exogenous DNase hydrolyzed surface-associated DNA; PCR demonstrated that vesicles contain DNA encoding the virulence genes eae, stx1 and stx2, and uidA, which encodes for β-galactosidase. Immunoblot analysis of intact and lysed, proteinase K-treated vesicles demonstrate that Shiga toxins 1 and 2 are contained within vesicles. These results suggest that vesicles contain toxic material and transfer experiments demonstrate that vesicles can deliver genetic material to other gram-negative organisms.

297 citations

01 Jan 1985
TL;DR: It is suggested that SSB may utilize both binding modes in its range of functions (replication, recombination, repair) and that in vivo changes in the ionic media may play a role in regulating some of these processes.
Abstract: The binding properties of the Escherichia coli encoded single strand binding protein (SSB) to a variety of synthetic homopolynucleotides, as well as to single stranded M13 DNA, have been examined as a function of the NaCl concentration (25.0 degrees C, pH 8.1). Quenching of the intrinsic tryptophan fluorescence of the SSB protein by the nucleic acid is used to monitor binding. We find that the site size (n) for binding of SSB to all single stranded nucleic acids is quite dependent on the NaCl concentration. For SSB-poly(dT), n = 33 +/- 3 nucleotides/tetramer below 10 mM NaCl and 65 +/- 5 nucleotides/tetramer above 0.20 M NaCl (up to 5 M). Between 10 mM and 0.2 M NaCl, the apparent site size increases continuously with [NaCl]. The extent of quenching of the bound SSB fluorescence by poly(dT) also displays two-state behavior, 51 +/- 3% quenching below 10 mM NaCl and 83 +/- 3% quenching at high [NaCl] (greater than 01.-0.2 M NaCl), which correlates with the observed changes in the occluded site size. On the basis of these observations as well as the data of Krauss et al. (Krauss, G., Sindermann, H., Schomburg, U., and Maass, G. (1981) Biochemistry 20, 5346-5352) and Chrysogelos and Griffith (Chrysogelos, S., and Griffith, J. (1982) Proc. Natl. Acad. Sci. U. S. A. 79,5803-5807) we propose a model in which E. coli SSB binds to single stranded nucleic acids in two binding modes, a low salt mode (n = 33 +/- 3), referred to as (SSB)33, in which the nucleic acid interacts with only two protomers of the tetramer, and one at higher [NaCl], n = 65 +/- 5, (SSB)65, in which the nucleic acid interacts with all 4 protomers of the tetramer. At intermediate NaCl concentrations a mixture of these two binding modes exists which explains the variable site sizes and other apparent discrepancies previously reported for SSB binding. The transition between the two binding modes is reversible, although the kinetics are slow, and it is modulated by NaCl concentrations within the physiological range. We suggest that SSB may utilize both binding modes in its range of functions (replication, recombination, repair) and that in vivo changes in the ionic media may play a role in regulating some of these processes.

297 citations

Journal ArticleDOI
TL;DR: Designation of the ygaA-ygaK-ygbD gene cluster as the norRVWmodulon for NO reduction and detoxification is suggested.

297 citations

Journal ArticleDOI
TL;DR: A nontoxic mutant (LTK7) of the Escherichia coli heat-labile enterotoxin lacking ADP-ribosylating activity but retaining holotoxin formation was constructed by using site-directed mutagenesis and was able to bind to eukaryotic cells and acted as a mucosal adjuvant for co-administered proteins.
Abstract: A nontoxic mutant (LTK7) of the Escherichia coli heat-labile enterotoxin (LT) lacking ADP-ribosylating activity but retaining holotoxin formation was constructed. By using site-directed mutagenesis, the arginine at position 7 of the A subunit was replaced with lysine. This molecule, which was nontoxic in several assays, was able to bind to eukaryotic cells and acted as a mucosal adjuvant for co-administered proteins; BALB/c mice immunized intranasally with LTK7 and ovalbumin developed high levels of serum and local antibodies to ovalbumin and toxin. In addition, mice immunized intranasally with fragment C of tetanus toxin and LTK7 were protected against lethal challenge with tetanus toxin. Thus nontoxic mutants of heat-labile toxin can act as effective intranasal mucosal adjuvants.

297 citations


Network Information
Related Topics (5)
Plasmid
44.3K papers, 1.9M citations
93% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
89% related
Nucleic acid sequence
41.6K papers, 1.9M citations
88% related
Peptide sequence
84.1K papers, 4.3M citations
88% related
Mutant
74.5K papers, 3.4M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20232,609
20225,796
20211,236
20201,337
20191,412