scispace - formally typeset
Search or ask a question
Topic

Escherichia coli

About: Escherichia coli is a research topic. Over the lifetime, 59041 publications have been published within this topic receiving 2050337 citations. The topic is also known as: E. coli & E coli jdj.


Papers
More filters
Journal ArticleDOI
TL;DR: The observation that E. coli and Salmonella evolved quorum-sensing systems primarily involved in interspecies communication may constitute an adaptation to this environment.

245 citations

Journal ArticleDOI
22 Oct 1981-Nature
TL;DR: Two insertion elements, IS1 and IS5, have been observed to effect activation of the cryptic bgl operon of Escherichia coli K12 and the operon is inducible by βglucosides in a cyclic AMP-dependent manner.
Abstract: Spontaneous mutations which activate the cryptic bgl operon of Escherichia coli K12 are caused by insertion of DNA at a site, bglR, within the operon. Two insertion elements, IS1 and IS5, have been observed to effect this activation. Once the activating insertion has occurred the operon is inducible by βglucosides in a cyclic AMP-dependent manner.

245 citations

Journal ArticleDOI
TL;DR: Complementation of bacterial mutations by yeast DNA segments does not appear to be a rare phenomenon.
Abstract: A collection of hybrid circular DNAs was constructed in vitro using the poly(dA-dT) "connector" method: each hybrid circle contained one molecule of poly(dT)-tailed DNA of plasmid ColE1 (made linear by digestion with EcoRI endonuclease) annealed to a poly(dA)-tailed fragment of yeast (Saccharomyces cerevisiae) DNA, produced originally by shearing total yeast DNA to an average size of 8 X 10(6) daltons. This DNA preparation was used to transform E. coli cells, selecting colicin-E1-resistant clones that contain hybrid ColE1-yeast DNA plasmids. Sufficient numbers of transformant clones were obtained to ensure that the hybrid plasmid population was representative of the entire yeast genome. Various hybrid ColE1-yeast DNA plasmids capable of complementing E. coli auxotrophic mutations were selected from this population. Plasmid pYeleu 10 complements several different point or deletion mutations in the E. coli or S. typhimurium leuB gene (beta-isopropylmalate dehydrogenase); plasmids pYeleu11, pYeleu12, and pYeleu17 are specific suppressors of the leuB6 mutation in E. coli C600. Plasmid pYehis2 complements a deletion in the E. coli hisB gene (imidazole glycerol phosphate dehydratase). Complementation of bacterial mutations by yeast DNA segments does not appear to be a rare phenomenon.

245 citations

Journal ArticleDOI
TL;DR: Nine H. pylori urease genes were identified and ureA, ureB,UreC, UreF, uREG, and UreH were shown to be required for ure enzyme expression in E. coli, as mutations in each of these genes led to negative phenotypes.
Abstract: Helicobacter pylori produces a potent urease that is believed to play a role in the pathogenesis of gastroduodenal diseases. Four genes (ureA, ureB, ureC, and ureD) were previously shown to be able to achieve a urease-positive phenotype when introduced into Campylobacter jejuni, whereas Escherichia coli cells harboring these genes did not express urease activity (A. Labigne, V. Cussac, and P. Courcoux, J. Bacteriol. 173:1920-1931, 1991). Results that demonstrate that H. pylori urease genes could be expressed in E. coli are presented in this article. This expression was found to be dependent on the presence of accessory urease genes hitherto undescribed. Subcloning of the recombinant cosmid pILL585, followed by restriction analyses, resulted in the cloning of an 11.2-kb fragment (pILL753) which allowed the detection of urease activity (0.83 +/- 0.39 mumol of urea hydrolyzed per min/mg of protein) in E. coli cells grown under nitrogen-limiting conditions. Transposon mutagenesis of pILL753 with mini-Tn3-Km permitted the identification of a 3.3-kb DNA region that, in addition to the 4.2-kb region previously identified, was essential for urease activity in E. coli. Sequencing of the 3.3-kb DNA fragment revealed the presence of five open reading frames encoding polypeptides with predicted molecular weights of 20,701 (UreE), 28,530 (UreF), 21,744 (UreG), 29,650 (UreH), and 19,819 (UreI). Of the nine urease genes identified, ureA, ureB, ureF, ureG, and ureH were shown to be required for urease expression in E. coli, as mutations in each of these genes led to negative phenotypes. The ureC, ureD, and ureI genes are not essential for urease expression in E. coli, although they belong to the urease gene cluster. The predicted UreE and UreG polypeptides exhibit some degree of similarity with the respective polypeptides encoded by the accessory genes of the Klebsiella aerogenes urease operon (33 and 92% similarity, respectively, taking into account conservative amino acid changes), whereas this homology was restricted to a domain of the UreF polypeptide (44% similarity for the last 73 amino acids of the K. aerogenes UreF polypeptide). With the exception of the two UreA and UreB structural polypeptides of the enzyme, no role can as yet be assigned to the nine proteins encoded by the H. pylori urease gene cluster.

245 citations


Network Information
Related Topics (5)
Plasmid
44.3K papers, 1.9M citations
93% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
89% related
Nucleic acid sequence
41.6K papers, 1.9M citations
88% related
Peptide sequence
84.1K papers, 4.3M citations
88% related
Mutant
74.5K papers, 3.4M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20232,609
20225,796
20211,236
20201,337
20191,412