scispace - formally typeset
Search or ask a question
Topic

Escherichia coli

About: Escherichia coli is a research topic. Over the lifetime, 59041 publications have been published within this topic receiving 2050337 citations. The topic is also known as: E. coli & E coli jdj.


Papers
More filters
Journal ArticleDOI
TL;DR: The observed link between virulence and phylogeny could correspond to the necessity of virulence determinants in a genetic background that is adequate for the emergence of a virulent clone, an expression of the interdependency of pathogenicity and metabolic activities in pathogenic bacteria.
Abstract: Previous studies suggesting a link between Escherichia coli phylogenetic groups and extraintestinal virulence have been hampered by the difficulty in establishing the intrinsic virulence of a bacterial strain. Indeed, unidentified virulence factors do exist, and the susceptibility of the host to infection is highly variable. To overcome these difficulties, we have developed a mouse model of extraintestinal virulence to test the virulence of the strains under normalized conditions. We then assessed the phylogenetic relationships compared to the E. coli reference (ECOR) collection, the presence of several known virulence determinants, and the lethality to mice of 82 human adult E. coli strains isolated from normal feces and during the course of extraintestinal infections. Commensal strains belong mainly to phylogenetic groups A and B1, are devoid of virulence determinants, and do not kill the mice. Strains exhibiting the same characteristics as the commensal strains can be isolated under pathogenic conditions, thus indicating the role of host-dependent factors, such as susceptibility linked to underlying disease, in the development of infection. Some strains of phylogenetic groups A, B1, and D are able to kill the mice, their virulence being most often correlated with the presence of virulence determinants. Lastly, strains of the B2 phylogenetic group represent a divergent lineage of highly virulent strains which kill the mice at high frequency and possess the highest level of virulence determinants. The observed link between virulence and phylogeny could correspond to the necessity of virulence determinants in a genetic background that is adequate for the emergence of a virulent clone, an expression of the interdependency of pathogenicity and metabolic activities in pathogenic bacteria.

787 citations

Journal ArticleDOI
TL;DR: A collection of 182 isogenic strains containing genetically linked antibiotic resistance elements located at approximately 1-min intervals around the Escherichia coli chromosome, designed to be used in a rapid two-step mapping system in E. coli.

787 citations

Journal ArticleDOI
TL;DR: The AcrAB system is identified as the major pump responsible for making the Mar mutants resistant to many agents, including tetracycline, chloramphenicol, ampicillin, nalidixic acid, and rifampin.
Abstract: Multiple-antibiotic-resistance (Mar) mutants of Escherichia coli are resistant to a wide variety of antibiotics, and increased active efflux is known to be responsible for the resistance to some drugs. The identity of the efflux system, however, has remained unknown. By constructing an isogenic set of E. coli K-12 strains, we showed that the marR1 mutation was incapable of increasing the resistance level in the absence of the AcrAB efflux system. This experiment identified the AcrAB system as the major pump responsible for making the Mar mutants resistant to many agents, including tetracycline, chloramphenicol, ampicillin, nalidixic acid, and rifampin.

782 citations

Journal ArticleDOI
01 Nov 1984-Nature
TL;DR: The cloning, sequence analysis and expression of murine IL-1 cDNA in Escherichia coli reveals a polypeptide precursor of 270 amino acids that may play a major role in the initiation and amplification of immune and inflammatory responses through its action on these diverse cell populations.
Abstract: Interleukin-1 (IL-1), a peptide hormone produced by activated macrophages, possesses the ability to modulate the proliferation, maturation and functional activation of a broad spectrum of cell types1–7 and may play a major role in the initiation and amplification of immune and inflammatory responses through its action on these diverse cell populations8. IL-1 exhibits microheterogeneity in terms of its relative molecular mass (Mr, 13,000–19,000) and charge properties8, and although murine IL-1 has been purified9,10 and some of its basic structure–function relationships have been elucidated8, it has proved difficult to prepare sufficient amounts of IL-1 for direct and detailed sequence and structural studies. Here we report the cloning, sequence analysis and expression of murine IL-1 cDNA in Escherichia coli. The IL-1 cDNA codes for a polypeptide precursor of 270 amino acids. Biologically active IL-1 was produced in E. coli by expressing the carboxy-terminal 156 amino acids of the IL-1 precursor.

778 citations


Network Information
Related Topics (5)
Plasmid
44.3K papers, 1.9M citations
93% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
89% related
Nucleic acid sequence
41.6K papers, 1.9M citations
88% related
Peptide sequence
84.1K papers, 4.3M citations
88% related
Mutant
74.5K papers, 3.4M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20232,609
20225,796
20211,236
20201,337
20191,412