scispace - formally typeset
Search or ask a question
Topic

Escherichia coli

About: Escherichia coli is a research topic. Over the lifetime, 59041 publications have been published within this topic receiving 2050337 citations. The topic is also known as: E. coli & E coli jdj.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a hybrid E. coli gene array with cDNA synthesized from RNA was extracted from EHEC strain 86-24 and its isogenic luxS mutant.
Abstract: Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for outbreaks of bloody diarrhea and hemolytic-uremic syndrome in many countries. EHEC virulence mechanisms include the production of Shiga toxins (Stx) and formation of attaching and effacing (AE) lesions on intestinal epithelial cells. We recently reported that genes involved in the formation of the AE lesion were regulated by quorum sensing through autoinducer-2, which is synthesized by the product of the luxS gene. In this study we hybridized an E. coli gene array with cDNA synthesized from RNA that was extracted from EHEC strain 86-24 and its isogenic luxS mutant. We observed that 404 genes were regulated by luxS at least fivefold, which comprises approximately 10% of the array genes; 235 of these genes were up-regulated and 169 were down-regulated in the wild-type strain compared to in the luxS mutant. Down-regulated genes included several involved in cell division, as well as ribosomal and tRNA genes. Consistent with this pattern of gene expression, the luxS mutant grows faster than the wild-type strain (generation times of 37.5 and 60 min, respectively, in Dulbecco modified Eagle medium). Up-regulated genes included several involved in the expression and assembly of flagella, motility, and chemotaxis. Using operon::lacZ fusions to class I, II, and III flagellar genes, we were able to confirm this transcriptional regulation. We also observed fewer flagella by Western blotting and electron microscopy and decreased motility halos in semisolid agar in the luxS mutant. The average swimming speeds for the wild-type strain and the luxS mutant are 12.5 and 6.6 μm/s, respectively. We also observed an increase in the production of Stx due to quorum sensing. Genes encoding Stx, which are transcribed along with λ-like phage genes, are induced by an SOS response, and genes involved in the SOS response were also regulated by quorum sensing. These results indicate that quorum sensing is a global regulatory mechanism for basic physiological functions of E. coli as well as for virulence factors.

423 citations

Journal ArticleDOI
TL;DR: CsrB RNA is a second component of the Csr system, which binds to CsrA and antagonizes its effects on gene expression, which explains previous observations on the homologous system in Erwinia carotovora.

423 citations

Journal ArticleDOI
24 Aug 1978-Nature
TL;DR: The structural gene for the lac repressor of Escherichia coli, the lacI gene has been sequenced and the DNA sequence largely confirms but extends the previously reported protein sequence and allows a structural analysis of genetic phenomena.
Abstract: The structural gene for the lac repressor of Escherichia coli, the lacI gene has been sequenced. This 1,080 base pair region of the E. coli chromosome codes for the lac repressor protein of 360 amino acids. The DNA sequence largely confirms but extends the previously reported protein sequence and allows a structural analysis of genetic phenomena.

422 citations

Journal ArticleDOI
TL;DR: Both acid resistance and base resistance show dependence on growth pH and are regulated by rpoS under certain conditions, and in part for base resistance, the rPOS requirement can be overcome by anaerobic growth in moderate acid.
Abstract: Escherichia coli K-12 strains and Shigella flexneri grown to stationary phase can survive several hours at pH 2 to 3, which is considerably lower than the acid limit for growth (about pH 4.5). A 1.3-kb fragment cloned from S. flexneri conferred acid resistance on acid-sensitive E. coli HB101; sequence data identified the fragment as a homolog of rpoS, the growth phase-dependent sigma factor sigma 38. The clone also conferred acid resistance on S. flexneri rpoS::Tn10 but not on Salmonella typhimurium. E. coli and S. flexneri strains containing wild-type rpoS maintained greater internal pH in the face of a low external pH than strains lacking functional rpoS, but the ability to survive at low pH did not require maintenance of a high transmembrane pH difference. Aerobic stationary-phase cultures of E. coli MC4100 and S. flexneri 3136, grown initially at an external pH range of 5 to 8, were 100% acid resistant (surviving 2 h at pH 2.5). Aerobic log-phase cultures grown at pH 5.0 were acid resistant; survival decreased 10- to 100-fold as the pH of growth was increased to pH 8.0. Extended growth in log phase also decreased acid resistance substantially. Strains containing rpoS::Tn10 showed partial acid resistance when grown at pH 5 to stationary phase; log-phase cultures showed < 0.01% acid resistance. When grown anaerobically at low pH, however, the rpoS::Tn10 strains were acid resistant. E. coli MC4100 also showed resistance at alkaline pH outside the growth range (base resistance). Significant base resistance was observed up to pH 10.2. Base resistance was diminished by rpoS::Tn10 and by the presence of Na+. Base resistance was increased by an order of magnitude for stationary-phase cultures grown in moderate base (pH 8) compared with those grown in moderate acid (pH 5). Anaerobic growth partly restored base resistance in cultures grown at pH 5 but not in those grown at pH 8. Thus, both acid resistance and base resistance show dependence on growth pH and are regulated by rpoS under certain conditions. For acid resistance, and in part for base resistance, the rpoS requirement can be overcome by anaerobic growth in moderate acid.

422 citations

Journal ArticleDOI
31 Oct 1980-Science
TL;DR: A survey of electrophoretic variation in 20 enzymes from 109 clones of Escherichia coli from natural populations yielded an estimate of mean genetic diversity approximately twice that reported in an earlier study and four to five times larger than estimates fro most eukaryotic species.
Abstract: A survey of electrophoretic variation in 20 enzymes from 109 clones of escherichia coli from natural populations yielded an estimate of mean genetic diversity approximately twice that reported in an earlier study and four to five times larger than estimates fro most eukaryotic species. Despite this extensive variability, the number of distinctive genotypes apparently is rather limited. Identical clones were obtained from unassociated hosts, and a clone that is electrophoretically indistinguishable from the laboratory strain Escherichia coli K-12 was isolated from a human infant. The results suggest that rates of genetic recombination in natural populations of Escherichia coli are low. These findings have implications for our understanding of the genetic structure of Escherichia coli populations and the factors determining the amount of neutral gene variability in this bacterial species.

422 citations


Network Information
Related Topics (5)
Plasmid
44.3K papers, 1.9M citations
93% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
89% related
Nucleic acid sequence
41.6K papers, 1.9M citations
88% related
Peptide sequence
84.1K papers, 4.3M citations
88% related
Mutant
74.5K papers, 3.4M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20232,609
20225,796
20211,236
20201,337
20191,412