scispace - formally typeset
Search or ask a question

Showing papers on "Esterase published in 2010"


Journal ArticleDOI
TL;DR: The number of mutants to be screened could be substantially reduced while the number of functionally intact variants was increased, and a significant number of hits with improved rates and enantioselectivities were identified in these “smart” libraries.
Abstract: Simultaneous multiple site-saturation mutagenesis was performed at four active-site positions of an esterase from Pseudomonas fluorescens to improve its ability to convert 3-phenylbutyric acid esters (3-PBA) in an enantioselective manner. Based on an appropriate codon choice derived from a structural alignment of 1751 sequences of alpha/beta-hydrolase fold enzymes, only those amino acids were considered for library creation that appeared frequently in structurally equivalent positions. Thus, the number of mutants to be screened could be substantially reduced while the number of functionally intact variants was increased. Whereas the wild-type esterase showed only marginal activity and poor enantioselectivity (E(true)=3.2) towards 3-PBA-ethyl ester, a significant number of hits with improved rates (up to 240-fold) and enantioselectivities (up to E(true)=80) were identified in these "smart" libraries.

123 citations


Journal ArticleDOI
TL;DR: Thermobifida alba strain AHK119 was shown to possess the ability to significantly degrade aliphatic-aromatic copolyester film as well as decreasing the polymer particle sizes when grown at 50°C on LB medium supplemented with polymer particles, yielding terephthalic acid.
Abstract: More than 100 bacterial strains were isolated from composted polyester films and categorized into two groups, Actinomycetes (four genera) and Bacillus (three genera). Of these isolates, Thermobifida alba strain AHK119 (AB298783) was shown to possess the ability to significantly degrade aliphatic-aromatic copolyester film as well as decreasing the polymer particle sizes when grown at 50 degrees C on LB medium supplemented with polymer particles, yielding terephthalic acid. The esterase gene (est119, 903 bp, encoding a signal peptide and a mature protein of 34 and 266 amino acids, respectively) was cloned from AHK119. The Est119 sequence contains a conserved lipase box (-G-X-S-X-G-) and a catalytic triad (Ser129, His207, and Asp175). Furthermore, Tyr59 and Met130 likely form an oxyanion hole. The recombinant enzyme was purified from cell-free extracts of Escherichia coli Rosetta-gami B (DE3) harboring pQE80L-est119. The enzyme is a monomeric protein of ca. 30 kDa, which is active from 20 degrees C to 75 degrees C (with an optimal range of 45 to 55 degrees C) and in a pH range of 5.5 to 7.0 (with an optimal pH of 6.0). Its preferred substrate among the p-nitrophenyl acyl esters (C2 to C8) is p-nitrophenyl hexanoate (C6), indicating that the enzyme is an esterase rather than a lipase.

112 citations


Journal ArticleDOI
TL;DR: Site-saturation libraries of the Pseudomonas fluorescens esterase were created targeting three surface positions to increase its thermostability on the basis of the B-factor iterative test principle andVariants could be identified that showed significantly improved stability without compromising specific activity.
Abstract: Site-saturation libraries of the Pseudomonas fluorescens esterase were created targeting three surface positions to increase its thermostability on the basis of the B-factor iterative test principle. All three positions were saturated simultaneously using our recently developed protocol for the design of 'small, but smart' mutant libraries bearing only consensus-like mutations. Hence, the library size could be significantly reduced while ensuring a high hit rate. Variants could be identified that showed significantly improved stability (8 degrees C higher compared with the wild type) without compromising specific activity. Subsequent iterative saturation mutagenesis gave an esterase mutant with a 9 degrees C increased melting point, but unchanged catalytic properties.

111 citations


Journal ArticleDOI
TL;DR: Parabens were readily metabolized in human liver through esterase hydrolysis and glucuronidation by several UGT isoforms, suggesting that they do not accumulate in human tissue.

108 citations


Journal ArticleDOI
TL;DR: Bioinformatic analyses of a male antennal expressed sequence tag library allowed the identification of 19 putative esterase genes expressed in the antennae of the moth Spodoptera littoralis, suggesting a specific role in olfactory processing.
Abstract: Recent studies have suggested that pheromone-degrading enzymes belonging to the carboxylesterase family could play a role in the dynamics of the olfactory response to acetate sex pheromones in insects. Bioinformatic analyses of a male antennal expressed sequence tag library allowed the identification of 19 putative esterase genes expressed in the antennae of the moth Spodoptera littoralis. Phylogenetic analysis revealed that these genes belong to different insect esterase clades, defined by their putative cellular localization and substrate preferences. Interestingly, two of the 19 genes appeared to be antennal specific, suggesting a specific role in olfactory processing. This high esterase diversity suggested that the antennae are the location for intense esterase-based metabolism, against potentially a large range of exogenous and endogenous molecules.

91 citations


Journal ArticleDOI
TL;DR: The identified potato ortholog of tobacco SABP2 (StMES1) is identified and shown that the recombinant protein converts MeSA to SA; this MeSA esterase activity is feedback inhibited by SA or its synthetic analog, tetra-fluoroacetophenone (tetraFA).
Abstract: Whether salicylic acid (SA) plays a role in systemic acquired resistance (SAR) signaling in potato is currently unclear because potato, unlike tobacco and Arabidopsis, contains highly elevated levels of endogenous SA. Recent studies have indicated that the SA derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile SAR signal in tobacco and Arabidopsis. Once in the distal, uninfected tissue of these plant species, MeSA must be converted into biologically active SA by the esterase activity of SA-binding protein 2 (SABP2) in tobacco or members of the AtMES family in Arabidopsis. In this study, we have identified the potato ortholog of tobacco SABP2 (StMES1) and shown that the recombinant protein converts MeSA to SA; this MeSA esterase activity is feedback inhibited by SA or its synthetic analog, 2, 2, 2, 2'-tetra-fluoroacetophenone (tetraFA). Potato plants (cv. Desiree) in which StMES1 activity was suppressed, due to either tetraFA treatment or silencing of StMES1 expression, were compromised for arachidonic acid (AA)-induced SAR development against Phytophthora infestans. Presumably due to the inability of these plants to convert MeSA to SA, the SAR-defective phenotype correlated with elevated levels of MeSA and reduced expression of pathogenesis-related (PR) genes in the untreated distal tissue. Together, these results strongly suggest that SAR signaling in potato requires StMES1, its corresponding MeSA esterase activity, and MeSA. Furthermore, the similarities between SAR signaling in potato, tobacco, and Arabidopsis suggest that at least certain SAR signaling components are conserved among plants, regardless of endogenous SA levels.

88 citations


Journal ArticleDOI
TL;DR: The identification and characterization of Arabidopsis CDEF1 (cuticle destructing factor 1) is reported, a novel candidate gene encoding cutinase, which suggests that CDEF 1 degrades cell wall components to facilitate the emergence of the lateral roots.
Abstract: Cutinase is an esterase that degrades the polyester cutin, a major component of the plant cuticle. Although cutinase activity has been detected in pollen, the genes encoding this enzyme have not been identified. Here, we report the identification and characterization of Arabidopsis CDEF1 (cuticle destructing factor 1), a novel candidate gene encoding cutinase. CDEF1 encodes a member of the GDSL lipase/esterase family of proteins, although fungal and bacterial cutinases belong to the alpha/beta hydrolase superfamily which is different from the GDSL lipase/esterase family. According to the AtGenExpress microarray data, CDEF1 is predominantly expressed in pollen. The ectopic expression of CDEF1 driven by the 35S promoter caused fusion of organs, including leaves, stems and flowers, and increased surface permeability. Ultrastructural analysis revealed that the cuticle of the transgenic plants was often disrupted and became discontinuous. Subcellular analysis with green fluorescent protein (GFP)-tagged CDEF1 showed that the protein is secreted to the extracellular space in leaves. The recombinant CDEF1 protein has esterase activity. These results are consistent with cutinase being secreted from cells and directly degrading the polyester in the cuticle. CDEF1 promoter activity was detected in mature pollen and pollen tubes, suggesting that CDEF1 is involved in the penetration of the stigma by pollen tubes. Additionally, we found CDEF1 expression at the zone of lateral root emergence, which suggests that CDEF1 degrades cell wall components to facilitate the emergence of the lateral roots. Our findings suggest that CDEF1 is a candidate gene for the unidentified plant cutinase.

87 citations


Journal ArticleDOI
TL;DR: Optimum organophosphorus hydrolase (OpdB) activity appeared at pH 6.0 and 35 degrees C and during degradation of chlorpyrifos, coumaphos, diazinon, methylparathion, and parathion.
Abstract: Lactobacillus brevis WCP902 that is capable of biodegrading chlorpyrifos was isolated from kimchi. The opdB gene cloned from this strain revealed 825 bp, encoding 274 aa, and an enzyme molecular weight of about 27 kDa. OpdB contains the same Gly-X-Ser-X-Gly motif found in most bacterial and eukaryotic esterase, lipase, and serine hydrolases, yet it is a novel member of the GDSVG family of esterolytic enzymes. Its conserved serine residue, Ser82, is significantly involved with enzyme activity that may have application for removing some pesticides. Optimum organophosphorus hydrolase (OpdB) activity appeared at pH 6.0 and 35 °C and during degradation of chlorpyrifos, coumaphos, diazinon, methylparathion, and parathion.

80 citations


Journal ArticleDOI
TL;DR: A gene encoding an esterase (estO) was identified and sequenced from a gene library screen of the psychrotolerant bacterium Pseudoalteromonas arctica and showed broad substrate specificity for esters of short-chain fatty acids (C2–C8).
Abstract: A gene encoding an esterase (estO) was identified and sequenced from a gene library screen of the psychrotolerant bacterium Pseudoalteromonas arctica. Analysis of the 1,203 bp coding region revealed that the deduced peptide sequence is composed of 400 amino acids with a predicted molecular mass of 44.1 kDa. EstO contains a N-terminal esterase domain and an additional OsmC domain at the C-terminus (osmotically induced family of proteins). The highly conserved five-residue motif typical for all α/β hydrolases (G × S × G) was detected from position 104 to 108 together with a putative catalytic triad consisting of Ser106, Asp196, and His225. Sequence comparison showed that EstO exhibits 90% amino acid identity with hypothetical proteins containing similar esterase and OsmC domains but only around 10% identity to the amino acid sequences of known esterases. EstO variants with and without the OsmC domain were produced and purified as His-tag fusion proteins in E. coli. EstO displayed an optimum pH of 7.5 and optimum temperature of 25°C with more than 50% retained activity at the freezing point of water. The thermostability of EstO (50% activity after 5 h at 40°C) dramatically increased in the truncated variant (50% activity after 2.5 h at 90°C). Furthermore, the esterase displays broad substrate specificity for esters of short-chain fatty acids (C2–C8).

77 citations


Journal ArticleDOI
TL;DR: Enzyme inhibition studies and analysis of substitution mutants of the carboxylesterase revealed the typical catalytic mechanism of a serine hydrolase with a catalytic triad composed of serine, glutamic acid, and histidine.
Abstract: We have identified a carboxylesterase produced in liquid cultures of the thermophilic actinomycete Thermobifida fusca KW3 that were supplemented with poly(ethylene terephthalate) fibers. The enzyme hydrolyzed highly hydrophobic, synthetic cyclic poly(ethylene terephthalate) trimers with an optimal activity at 60°C and a pH of 6. V max and K m values for the hydrolysis were 9.3 µmol−1 min−1 mg−1 and 0.5 mM, respectively. The esterase showed high specificity towards short and middle chain-length fatty acyl esters of p-nitrophenol. The enzyme retained 37% of its activity after 96 h of incubation at 50°C and a pH of 8. Enzyme inhibition studies and analysis of substitution mutants of the carboxylesterase revealed the typical catalytic mechanism of a serine hydrolase with a catalytic triad composed of serine, glutamic acid, and histidine.

71 citations


Journal ArticleDOI
TL;DR: Two X-ray structures of L29P PFE are reported that support the proposed proposal that moving the carbonyl group closer to the active site blocks access for larger alcohol moieties but binds epsilon-caprolactone more tightly, and are consistent with the natural function of perhydrolases being either hydrolysis of peroxycarboxylic acids or hydroleysis of lactones.
Abstract: Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We als...

Journal ArticleDOI
TL;DR: A metagenomic library was constructed from completely fermented compost using a fosmid vector and the purified Est2K showed the highest similarity to EstC, an esterase of an uncultured bacterium from leachate, despite not hydrolyze beta-lactam antibiotics ampicillin and nitrocefin.

Journal ArticleDOI
01 May 2010-Proteins
TL;DR: The structure of a FA esterase from the ruminant bacterium Butyrivibrio proteoclasticus has been determined in two different space groups, in both the apo‐form, and the ligand bound form with FA located in the active site, revealing a new lid domain that has no structural homologues in the PDB.
Abstract: The release of polysaccharide from the plant cell wall is a key process to release the stored energy from plant biomass. Within the ruminant digestive system, a host of commensal microorganisms speed the breakdown of plant cell matter releasing fermentable sugars. The presence of phenolic compounds, most notably ferulic acid (FA), esterified within the cell wall is thought to pose a significant impediment to the degradation of the plant cell wall. The structure of a FA esterase from the ruminant bacterium Butyrivibrio proteoclasticus has been determined in two different space groups, in both the apo-form, and the ligand bound form with FA located in the active site. The structure reveals a new lid domain that has no structural homologues in the PDB. The flexibility of the lid domain is evident by the presence of three different conformations adopted by different molecules in the crystals. In the FA-bound structures, these conformations show sequential binding and closing of the lid domain over the substrate. Enzymatic activity assays demonstrate a broad activity against plant-derived hemicellulose, releasing at least four aromatic compounds including FA, coumaric acid, coumarin-3-carboxylic acid, and cinnamic acid. The rumen is a complex ecosystem that efficiently degrades plant biomass and the genome of B. proteoclasticus contains greater than 130 enzymes, which are potentially involved in this process of which Est1E is the first to be well characterized. Proteins 2010. © 2009 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: It was concluded that the aspirin esterase activity of albumin is a pseudo-esterase activity in which aspirin stably acetylates lysines and releases salicylate.

Journal ArticleDOI
TL;DR: Phylogenetic analysis revealed that the lipolytic protein EstD2 may be a member of a novel family oflipolytic enzymes and suggested that the other hypothetical protein homologs of EstD 2 might also be members of this novel family.
Abstract: Soil metagenome constitutes a reservoir for discovering novel enzymes from the unculturable microbial diversity. From three plant rhizosphere metagenomic libraries comprising a total of 142,900 members of recombinant plasmids, we obtained 14 recombinant fosmids that exhibited lipolytic activity. A selected recombinant plasmid, pFLP-2, which showed maximum lipolytic activity, was further analyzed. DNA sequence analysis of the subclone in pUC119, pELP-2, revealed an open reading frame of 1,191 bp encoding a 397-amino-acid protein. Purified EstD2 exhibited maximum enzymatic activity towards p-nitrophenyl butyrate, indicating that it is an esterase. Purified EstD2 showed optimal activity at 35 °C and at pH 8.0. The K m and K cat values were determined to be 79.4 μM and 120.5/s, respectively. The esterase exhibited an increase in enzymatic activity in the presence of 15% butanol and 15% methanol. Phylogenetic analysis revealed that the lipolytic protein EstD2 may be a member of a novel family of lipolytic enzymes. Several hypothetical protein homologs of EstD2 were found in the database. A hypothetical protein from Phenylobacterium zucineum HLK1, a close homolog of EstD2, displayed lipolytic activity when the corresponding gene was expressed in Escherichia coli. Our results suggest that the other hypothetical protein homologs of EstD2 might also be members of this novel family.

Journal ArticleDOI
TL;DR: A glucuronoyl ester enzyme from the thermophilic fungus Sporotrichum thermophile, belonging to the carbohydrate esterase family 15 (CE-15), was functionally expressed in the methylotrophic yeast Pichia pastoris, rendering StGE2 a strong candidate for future biotechnological applications that require robust biocatalysts.
Abstract: A glucuronoyl esterase (GE) from the thermophilic fungus Sporotrichum thermophile, belonging to the carbohydrate esterase family 15 (CE-15), was functionally expressed in the methylotrophic yeast Pichia pastoris. The putative GE gene ge2 from the genomic DNA was successfully cloned in frame with the sequence for the Saccharomyces cerevisiae α-factor secretion signal under the transcriptional control of the alcohol oxidase (AOX1) promoter and integrated in P. pastoris X-33 to confirm that the encoded enzyme StGE2 exhibits esterase activity. The enzyme was active on substrates containing glucuronic acid methyl ester, showing optimal activity at pH 7.0 and 55°C. The esterase displayed broad pH range stability between 4–10 and temperature stability up to 50°C, rendering StGE2 a strong candidate for future biotechnological applications that require robust biocatalysts. ClustalW alignment of StGE2 with characterized GEs and selected homologous sequences, members of CE-15 family, revealed a novel consensus sequence G-C-S-R-X-G that features the characteristic serine residue involved in the generally conserved catalytic mechanism of the esterase family. The putative serine has been mutated, and the corresponding enzyme has been expressed in P. pastoris to prove that the candidate nucleophilic residue is responsible for catalyzing the enzymatic reaction.

Journal ArticleDOI
TL;DR: The results suggest that &agr;-mangostin may be a lead compound for the development of a new organically based mosquito larvicide.
Abstract: α-Mangostin derived from mangosteen was identified as a mosquito sterol carrier protein-2 inhibitor via high throughput insecticide screening. α-Mangostin was tested for its larvicidal activity against third instar larvae of six mosquito species, and the median lethal concentration values range from 0.84 to 2.90 ppm. The residual larvicidal activity of α-mangostin was examined under semifield conditions. The results indicated that α-mangostin was photolytic with a half-life of 53 min in water under full sunlight exposure. The effect of α-mangostin on activities of major detoxification enzymes such as P450, glutathione S-transferase, and esterase was investigated. The results showed that α-mangostin significantly elevated activities of P450 and glutathione S-transferase in larvae, whereas it suppressed esterase activity. Toxicity of α-mangostin against young rats was studied, and there was no detectable adverse effect at dosages as high as 80 mg/kg. This is the first multifaceted study of the biological activity of α-mangostin in mosquitoes. The results suggest that α-mangostin may be a lead compound for the development of a new organically based mosquito larvicide.

Journal ArticleDOI
TL;DR: Esterase inhibition assays provide an effect-directed tool of rapid screening for inhibitors in environmental and food samples and were able to detect insecticides of high and low inhibitory power from the ng to microg range per zone.

Journal ArticleDOI
TL;DR: This work converts a plant esterase, SABP2, into a hydroxynitrile lyase using just two amino acid substitutions, and shows that the specificity constant for the lysis of mandelontrile is 13,000-fold faster than the uncatalyzed reaction and only 1300-fold less efficient than hydroxyspected lyase from rubber tree.

Journal ArticleDOI
TL;DR: Elevated esterases activities and increased band intensities of multiple esterase isozymes after electrophoresis are commonly associated with resistance to organophosphate, pyrethroid and carbamate insecticides in various heliothine and spodopteran pests.
Abstract: Elevated esterase activities and increased band intensities of multiple esterase isozymes after electrophoresis are commonly associated with resistance to organophosphate, pyrethroid and carbamate insecticides in various heliothine and spodopteran pests. One possible explanation for this involves a ‘master regulator’ mutation in a more general chemical stress response. An association between elevated esterase activities and isozyme intensities has also been reported for resistance to the Cry1Ac toxin of Helicoverpa armigera. The basis for this is unclear albeit some involvement of esterases could be mediated by the toxin’s affinity for N-acetyl galactosamine glycans on certain gut-expressed esterases in this species. © Pesticide Science Society of Japan

Journal ArticleDOI
TL;DR: Carbonic anhydrases belonging to α-CAs showed esterase/phosphatase activity, whereas enzymes belonging to the β-, γ- and ζ-classes were completely devoid of such activity.

Journal ArticleDOI
TL;DR: EstHE1 has the thermal stability and salt tolerance necessary for use as an industrial enzyme and also maintained activity in high concentrations of NaCl, indicating that this esterase is salt-tolerant.
Abstract: Using a metagenome library constructed from a bacterial associated with a marine sponge Hyrtios erecta, we identified a novel esterase that belongs to the SGNH hydrolase superfamily of esterases. The substrate specificity of EstHE1 was determined using p-nitrophenyl (pNP) ester (C2: acetate, C4: butylate, C6: caproate, C12: laurate, C16: palmitate). EstHE1 exhibited activity against C2 (5.6 U/mg), C4 (5.1 U/mg), and C6 (2.8 U/mg) substrates. The optimal temperature for EstHE1 esterase activity of the pNP acetate substrate was 40°C, and EstHE1 retained 60% of its enzymatic activity in the 30-50°C range. This esterase showed moderate thermostability, retaining 58% of its activity even after preincubation for 12 h at 40°C. EstHE1 also maintained activity in high concentrations of NaCl, indicating that this esterase is salt-tolerant. Thus, EstHE1 has the thermal stability and salt tolerance necessary for use as an industrial enzyme.

Journal ArticleDOI
TL;DR: The high levels of gut CE activity and its inhibition and recovery dynamic following OP exposure suggest that this esterase could play an important role as an enzymatic barrier against OP uptake from the ingested contaminated soil.
Abstract: Exposure and effect assessment of organophosphate (OP) pesticides generally involves the use of cholinesterase (ChE) inhibition. In earthworm, this enzyme activity is often measured in homogenates from the whole organism. Here we examine the tissue-specific response of ChE and carboxylesterase (CE) activities in Lumbricus terrestris experimentally exposed to chlorpyrifos-spiked field soils. Esterases were measured in different gut segments and in the seminal vesicles of earthworms following acute exposure (2 d) to the OP and during 35 d of a recovery period. We found that inhibition of both esterase activities was dependent on the tissue. Cholinesterase activity decreased in the pharynx, crop, foregut and seminal vesicles in a concentration-dependent way, whereas CE activity (4-nitrophenyl valerate) was strongly inhibited in these tissues. Gizzard CE activity was not inhibited by the OP, even an increase of enzyme activity was evident during the recovery period. These results suggest that both esterases should be determined jointly in selected tissues of earthworms. Moreover, the high levels of gut CE activity and its inhibition and recovery dynamic following OP exposure suggest that this esterase could play an important role as an enzymatic barrier against OP uptake from the ingested contaminated soil.

Journal ArticleDOI
TL;DR: A highly efficient carbendazim (methyl-1H-benzimidazol-2-ylcarbamate, or MBC)-mineralizing bacterium was isolated from enrichment cultures originating from MBC-contaminated soil samples, and the initial steps of this novel metabolic pathway were confirmed by growth and enzyme assays and liquid chromatography-mass spectrometry studies.
Abstract: A highly efficient carbendazim (methyl-1H-benzimidazol-2-ylcarbamate, or MBC)-mineralizing bacterium was isolated from enrichment cultures originating from MBC-contaminated soil samples. This bacterium, Nocardioides sp. strain SG-4G, hydrolyzed MBC to 2-aminobenzimidazole, which in turn was converted to the previously unknown metabolite 2-hydroxybenzimidazole. The initial steps of this novel metabolic pathway were confirmed by growth and enzyme assays and liquid chromatography-mass spectrometry (LC-MS) studies. The enzyme responsible for carrying out the first step was purified and subjected to N-terminal and internal peptide sequencing. The cognate gene, named mheI (for MBC-hydrolyzing enzyme), was cloned using a reverse genetics approach. The MheI enzyme was found to be a serine hydrolase of 242 amino acid residues. Its nearest known relative is an uncharacterized hypothetical protein with only 40% amino acid identity to it. Codon optimized mheI was heterologously expressed in Escherichia coli, and the His-tagged enzyme was purified and biochemically characterized. The enzyme has a K(m) and k(cat) of 6.1 muM and 170 min(-1), respectively, for MBC. Radiation-killed, freeze-dried SG-4G cells showed strong and stable MBC detoxification activity suitable for use in enzymatic bioremediation applications.

Journal ArticleDOI
TL;DR: Results of both in vivo and in vitro assays indicated stereoselectivity in the estrogenic activity of PM resulting from stereoselectedive biotransformation of the parent compound to more estrogenic metabolites.
Abstract: This study investigated the stereoselective biotransformation and resulting estrogenic activity of the pyrethroid insecticide, permethrin (PM). Results of both in vivo (male Japanese medaka, vitellogenin (VTG) protein in plasma) and in vitro (primary rainbow trout hepatocyte VTG-mRNA expression) assays indicated stereoselective estrogenic activity of PM. 1S-cis-PM was observed to have significantly higher activity (P ≤ 0.05) than the 1R-cis enantiomer in both in vivo and in vitro evaluations. All enantiomers of PM were oxidized to a 4'-hydoxy PM (4OH PM) metabolite and underwent esterase cleavage to 3-phenoxybenzyl alcohol (3-PBOH) and 3-(4'-hydroxyphenoxy)-benzyl alcohol) (3,4'-PBOH). Racemic 4OH PM as well as 3-PBOH, and 3,4'-PBOH possessed significant (P ≤ 0.05) estrogenicity. 1S-trans-PM underwent esterase cleavage more extensively than the corresponding 1R-trans-PM. Inhibition studies with ketoconazole confirmed cytochrome P450-catalyzed hydroxylation as well as esterase cleavage of PM for all stereoisomers. These studies indicated stereoselectivity in the estrogenic activity of PM resulting from stereoselective biotransformation of the parent compound to more estrogenic metabolites.

Journal ArticleDOI
TL;DR: This study shows, for the first time, CD data about secondary structure of an esterase from L. plantarum, and presents highest activity at pH 6.0 and 40°C and presents preference for p-nitrophenyl butyrate, but hydrolyzed more efficiently p- nitrogenous acetate.
Abstract: Lactobacillus plantarum is an important lactic acid bacterium, usually found as natural inhabitant of food, such as fermented vegetables and meat products. However, little information about lactic acid bacteria, especially concerning L. plantarum, as a source of useful enzymes has been reported. The aim of this study was to clone, express in Escherichia coli, purify, and characterize an esterase from L. plantarum ATCC 8014. The esterase gene (1014 bp) was amplified and cloned in pET14b expression vector to express a His(6)-tagged protein in E. coli. Recombinant L. plantarum esterase was purified by Ni-NTA resin, presenting an apparent molecular mass of about 38 kDa. It presented highest activity at pH 6.0 and 40 degrees C. Also, it presented preference for p-nitrophenyl butyrate, but hydrolyzed more efficiently p-nitrophenyl acetate. Besides, this study shows, for the first time, CD data about secondary structure of an esterase from L. plantarum.

Journal ArticleDOI
TL;DR: Esterase enzymes may be playing a role in chlorpyrifos resistance while glutathione S-transferase (GST) and P450 enzymes do not appear to have any significant involvement.
Abstract: Changes in insecticide susceptibilities and detoxifying enzyme activities were measured in a strain of Tetranychus urticae Koch following repeated exposure to the organophosphate insecticide, chlorpyrifos. Twelve consecutive selection at the LC60 of the parental strain increased resistance from 8.58 to 91.45 fold. The interaction of some synergists [piperonyl butoxide, triphenyl phosphate and S-benzyl-O,O-diisopropyl phosphorothioate (IBP)] with chlorpyrifos was analyzed in the selected strain. Solely IBP showed a low synergistic effect with chlorpyrifos. The selected strain also demonstrated resistance against abamectin, propargite, clofentezine and fenpyroximate. The mode of resistance inheritance to chlorpyrifos was found to be incompletely dominant, and not sex-linked. Non-specific esterase enzyme activity was raised from 19.35 to 33.59 mOD/min/mg proteins during the selection period and it was observed that esterase band intensities visualized by polyacrylamide gel electrophoresis increased. This study has investigated the selection of resistance to chlorpyrifos and documented resistance to abamectin, propargite, clofentezine and fenpyroximate in Turkish T. urticae. Esterase enzymes may be playing a role in chlorpyrifos resistance while glutathione S-transferase (GST) and P450 enzymes do not appear to have any significant involvement.

Journal ArticleDOI
TL;DR: A metagenomic library was generated from peat-swamp forest soil obtained from Narathiwat Province, Thailand, and the full-length lipase/esterase gene, estPS2, was identified, indicating that it was an esterase with activity and secretion characteristics suitable for commercial development.
Abstract: In this work, a metagenomic library was generated from peat-swamp forest soil obtained from Narathiwat Province, Thailand. From a fosmid library of approximately 15,000 clones, six independent clones were found to possess lipolytic activity at acidic pH. Analysis of pyrosequencing data revealed six ORFs, which exhibited 34-71% protein similarity to known lipases/esterases. A fosmid clone, designated LP8, which demonstrated the highest level of lipolytic activity under acidic conditions and demonstrated extracellular activity, was subsequently subcloned and sequenced. The full-length lipase/esterase gene, estPS2, was identified. Its deduced amino acid was closely related to a lipolytic enzyme of an uncultured bacterium, and contained the highly conserved motif of a hormone-sensitive family IV lipase. The EstPS2 enzyme exhibited highest activity toward p-nitrophenyl butyrate (C⁴) at 37 °C at pH 5, indicating that it was an esterase with activity and secretion characteristics suitable for commercial development.

Journal ArticleDOI
TL;DR: The need for a structure-activity relationship study into the albumin-associated esterase activities is concluded because this protein is universally present in vertebrates and could compensate for reduced levels of other esterases, i.e., lipoprotein paraoxonase, in some species.

Journal ArticleDOI
Yu-Chun Huang1, Gen-Hung Chen1, Yu-Fen Chen1, Wei-Lin Chen1, Chao-Hsun Yang1 
TL;DR: The axe gene which encodes an acetylxylan esterase from Thermobifida fusca NTU22, was cloned, sequenced and expressed in Escherichia coli and exhibited a high degree of similarity with BTA-hydrolase.