scispace - formally typeset
Search or ask a question

Showing papers on "Esterase published in 2020"


Journal ArticleDOI
TL;DR: In this review, insights are attempted to provide insights of pyrethroid-degrading esterases in different living systems along with complete mechanisms of these esterase mechanisms.

136 citations


Journal ArticleDOI
TL;DR: Molecular modeling, docking, and enzyme kinetics were used to investigate the binding pocket of the esterase containing amino acids, which play active roles in allethrin degradation, and effectively degraded a wide variety of pyrethroids as a carbon source.

89 citations


Journal ArticleDOI
TL;DR: The enzyme was shown to be versatile because it hydrolyzes a number of natural and synthetic substrates and hydrolyzed the recalcitrant polymers cutin and suberin because the release of fatty acids from these substrates was observed following the incubation of the enzyme with these polymers.
Abstract: The genome of Streptomyces scabies, the predominant causal agent of potato common scab, encodes a potential cutinase, the protein Sub1, which was previously shown to be specifically induced in the presence of suberin. The sub1 gene was expressed in Escherichia coli and the recombinant protein Sub1 was purified and characterized. The enzyme was shown to be versatile because it hydrolyzes a number of natural and synthetic substrates. Sub1 hydrolyzed p-nitrophenyl esters, with the hydrolysis of those harboring short carbon chains being the most effective. The Vmax and Km values of Sub1 for p-nitrophenyl butyrate were 2.36 mol g-1 min-1 and 5.7 10-4 M, respectively. Sub1 hydrolyzed the recalcitrant polymers cutin and suberin because the release of fatty acids from these substrates was observed following the incubation of the enzyme with these polymers. Furthermore, the hydrolyzing activity of the esterase Sub1 on the synthetic polymer polyethylene terephthalate (PET) was demonstrated by the release of terephthalic acid (TA). Sub1 activity on PET was markedly enhanced by the addition of Triton and was shown to be stable at 37°C for at least 20 d.

40 citations


Journal ArticleDOI
TL;DR: An increase in pectin demethylation activity, the higher concentration of cellulose and hemicellulose, regulated by related genes, in Tor-1 than in Ph2-23 are likely involved in enhanced Cd CW retention and reduce Cd toxicity.
Abstract: Cadmium (Cd) is a toxic metal element and the mechanism(s) underlying Cd tolerance in plants are still unclear. Increasingly more studies have been conducted on Cd binding to plant cell walls (CW) but most of them have focused on Cd fixation by CW pectin, and few studies have examined Cd binding to cellulose and hemicellulose. Here we found that Cd binding to CW pectin, cellulose, and hemicellulose was significantly higher in Tor-1, a Cd tolerant A. thaliana ecotype, than in Ph2-23, a sensitive ecotype, as were the concentrations of pectin, cellulose, and hemicellulose. Transcriptome analysis revealed that the genes regulating CW pectin, cellulose, and hemicellulose polysaccharide concentrations in Tor-1 differed significantly from those in Ph2-23. The expressions of most genes such as pectin methyl esterase inhibitors (PMEIs), pectin lyases, xyloglucan endotransglucosylase/hydrolase, expansins (EXPAs), and cellulose hydrolase were higher in Ph2-23, while the expressions of cellulose synthase-like glycosyltransferase 3 (CSLG3) and pectin ethyl esterase 4 (PAE4) were higher in Tor-1. The candidate genes identified here seem to regulate CW Cd fixation by polysaccharides. In conclusion, an increase in pectin demethylation activity, the higher concentration of cellulose and hemicellulose, regulated by related genes, in Tor-1 than in Ph2-23 are likely involved in enhanced Cd CW retention and reduce Cd toxicity.

31 citations


Journal ArticleDOI
TL;DR: Cloned the antennal esterase SexiCXE11 cDNA full-length sequences from the male antennae of a notorious crop pest, Spodoptera exigua, and its encoded 538 amino acids are cloned to facilitate a better understanding of moth ODE differentiation and suggest strategies for the development of new pest behavior inhibitors.

29 citations


Journal ArticleDOI
TL;DR: This study suggests that selection with spirodiclofen results in enrichment of a specific allele of CCE04 (CCE04SR-VP) in two genetically independent strains, which is highly overexpressed and seems more likely to be involved in resistance.
Abstract: Background Spirodiclofen is an acaricide that targets lipid biosynthesis by inhibiting acetyl-coenzyme A carboxylase. Spirodiclofen resistance in spider mites has been previously documented and was associated with overexpression of CYP392E10, a cytochrome P450 mono-oxygenase that metabolizes spirodiclofen. However, additional mechanisms have been suggested in several studies and a carboxyl/choline esterase gene, CCE04, was shown to be overexpressed in two genetically different strains, SR-VP and SR-TK, both exhibiting high spirodiclofen resistance levels. Results We identified two different CCE04 alleles in both resistant strains, CCE04SR-VP and CCE04London , with CCE04SR-VP being highly overexpressed. Isoelectric focusing analysis confirmed the overexpression of a single esterase isozyme, while copy number and random fragment length polymorphism analysis revealed that CCE04SR-VP overexpression was more likely due to selection for the CCE04SR-VP allele rather than gene amplification. Both CCE04 alleles were functionally expressed using the Pichia expression system. Functional enzyme assays revealed only limited kinetic differences between CCE04 isoforms for model substrates. In addition, inhibition/competition experiments with spirodiclofen suggested a similar interaction with both enzymes, whereas its active metabolite, spirodiclofen enol, did not inhibit enzyme activity. Conclusion Our study suggests that selection with spirodiclofen results in enrichment of a specific allele of CCE04 (CCE04SR-VP ) in two genetically independent strains, which is highly overexpressed. Based on kinetic enzyme data, however, quantitative rather than qualitative differences between CCE04SR-VP and CCE04London seem more likely to be involved in resistance. Our findings are discussed in the light of a possible spirodiclofen resistance mechanism, with sequestration of spirodiclofen by CCE04SR-VP being a likely hypothesis. © 2019 Society of Chemical Industry.

28 citations


Journal ArticleDOI
TL;DR: This report is the first report that family VI esterase displaying PAE-hydrolysis activity is reported, and proves that BaCEs04 could be used as an ideal candidate for the application in bioremediation and industry.

28 citations


Journal ArticleDOI
TL;DR: The first phthalate hydrolase (EstM2), isolated from a soil metagenomic library that belongs to a family possessing β -lactamase like catalytic triad, displays an atypical hydrolytic potential of biotechnological significance within family VIII esterases.
Abstract: Microbes are rich sources of enzymes and esterases are one of the most important classes of enzymes because of their potential for application in the field of food, agriculture, pharmaceuticals and bioremediation. Due to limitations in their cultivation, only a small fraction of the complex microbial communities can be cultured from natural habitats. Thus to explore the catalytic potential of uncultured organisms, the metagenomic approach has turned out to be an effective alternative method for direct mining of enzymes of interest. Based on activity-based screening method, an esterase-positive clone was obtained from metagenomic libraries. Functional screening of a soil metagenomic fosmid library, followed by transposon mutagenesis led to the identification of a 1179 bp esterase gene, estM2, that encodes a 392 amino acids long protein (EstM2) with a translated molecular weight of 43.12 kDa. Overproduction, purification and biochemical characterization of the recombinant protein demonstrated carboxylesterase activity towards short-chain fatty acyl esters with optimal activity for p-nitrophenyl butyrate at pH 8.0 and 37 °C. Amino acid sequence analysis and subsequent phylogenetic analysis suggested that EstM2 belongs to the family VIII esterases that bear modest similarities to class C β-lactamases. EstM2 possessed the conserved S-x-x-K motif of class C β-lactamases but did not exhibit β-lactamase activity. Guided by molecular docking analysis, EstM2 was shown to hydrolyze a wide range of di- and monoesters of alkyl-, aryl- and benzyl-substituted phthalates. Thus, EstM2 displays an atypical hydrolytic potential of biotechnological significance within family VIII esterases. This study has led to the discovery of a new member of family VIII esterases. To the best of our knowledge, this is the first phthalate hydrolase (EstM2), isolated from a soil metagenomic library that belongs to a family possessing β-lactamase like catalytic triad. Based on its catalytic potential towards hydrolysis of both phthalate diesters and phthalate monoesters, this enzyme may find use to counter the growing pollution caused by phthalate-based plasticizers in diverse geological environment and in other aspects of biotechnological applications.

24 citations


Journal ArticleDOI
TL;DR: Considering the properties, such as the moderate thermostability, stability against organic solvents, and activity toward esters of tertiary alcohols, the EstCS1 will be worthwhile to be used for organic synthesis and related industrial applications.
Abstract: A novel esterase, EstCS1, was isolated from a compost metagenomics library. The EstCS1 protein, which consists of 309 amino acid residues with an anticipated molecular mass of 34 kDa, showed high amino acid sequence identities to predicted esterases and alpha/beta hydrolases (59%) from some cultured bacteria and to predicted lipases/esterases from uncultured bacteria. The phylogenetic analysis suggested that the EstCS1 belongs to the hormone-sensitive lipase family of lipolytic enzyme classification and contains a catalytic triad including Ser155-Asp255-His285. The Ser155 residue of the catalytic triad in the EstCS1 was located in the consensus active-site motif, GXSXG. Besides, a conserved HGGG motif placed in an oxyanion hole of the hormone-sensitive lipase family was discovered, too. The EstCS1 demonstrated the highest activity toward p-nitrophenyl propionate (C3) and caproate (C6) and was normally stable up to 60°C with optimal activity at 50°C. In addition, an optimal activity was observed at pH 8, and the EstCS1 possessed its stability within the pH range between 5 and 10. Interestingly, EstCS1 had an outstanding stability in up to 30% (v/v) organic solvents and activity over 50% in the presence of 50% (v/v) acetone, ethanol, dimethyl sulfoxide (DMSO), and N,N-dimethylformamide. The EstCS1 hydrolyzed sterically hindered tertiary alcohol esters of t-butyl acetate and linalyl acetate. Considering the properties, such as the moderate thermostability, stability against organic solvents, and activity toward esters of tertiary alcohols, the EstCS1 will be worthwhile to be used for organic synthesis and related industrial applications.

23 citations


Journal ArticleDOI
TL;DR: The equilibrium of intramolecular spirocyclization of coumarin-hemicyanine hybrid fluorophores can be finely tuned by means of chemical modifications and this scaffold is used to develop activatable fluorescent probes with large Stokes shifts for γ-glutamyltranspeptidase and esterase.

23 citations


Journal ArticleDOI
TL;DR: A detailed structural analysis of the glucuronoyl esterase from Cerrena unicolor is presented, providing the basis for its activity on natural substrate and for how lignin can be selectively separated from lignocellulosic materials.
Abstract: Structural and functional studies were conducted of the glucuronoyl esterase (GE) from Cerrena unicolor (CuGE), an enzyme catalyzing cleavage of lignin-carbohydrate ester bonds. CuGE is an α/β-hydrolase belonging to carbohydrate esterase family 15 (CE15). The enzyme is modular, comprised of a catalytic and a carbohydrate-binding domain. SAXS data show CuGE as an elongated rigid molecule where the two domains are connected by a rigid linker. Detailed structural information of the catalytic domain in its apo- and inactivated form and complexes with aldouronic acids reveal well-defined binding of the 4-O-methyl-a-D-glucuronoyl moiety, not influenced by the nature of the attached xylo-oligosaccharide. Structural and sequence comparisons within CE15 enzymes reveal two distinct structural subgroups. CuGE belongs to the group of fungal CE15-B enzymes with an open and flat substrate-binding site. The interactions between CuGE and its natural substrates are explained and rationalized by the structural results, microscale thermophoresis and isothermal calorimetry.

Journal ArticleDOI
TL;DR: It is demonstrated that multidomain carbohydrate esterases, targeting the non-carbohydrate decorations on different xylan polysaccharides, can considerably facilitate glycoside hydrolase-mediated hydrolysis of xylan and xylan-rich biomass.
Abstract: Plant biomass is an abundant and renewable carbon source that is recalcitrant towards both chemical and biochemical degradation. Xylan is the second most abundant polysaccharide in biomass after cellulose, and it possesses a variety of carbohydrate substitutions and non-carbohydrate decorations which can impede enzymatic degradation by glycoside hydrolases. Carbohydrate esterases are able to cleave the ester-linked decorations and thereby improve the accessibility of the xylan backbone to glycoside hydrolases, thus improving the degradation process. Enzymes comprising multiple catalytic glycoside hydrolase domains on the same polypeptide have previously been shown to exhibit intramolecular synergism during degradation of biomass. Similarly, natively fused carbohydrate esterase domains are encoded by certain bacteria, but whether these enzymes can result in similar synergistic boosts in biomass degradation has not previously been evaluated. Two carbohydrate esterases with similar architectures, each comprising two distinct physically linked catalytic domains from families 1 (CE1) and 6 (CE6), were selected from xylan-targeting polysaccharide utilization loci (PULs) encoded by the Bacteroidetes species Bacteroides ovatus and Flavobacterium johnsoniae. The full-length enzymes as well as the individual catalytic domains showed activity on a range of synthetic model substrates, corn cob biomass, and Japanese beechwood biomass, with predominant acetyl esterase activity for the N-terminal CE6 domains and feruloyl esterase activity for the C-terminal CE1 domains. Moreover, several of the enzyme constructs were able to substantially boost the performance of a commercially available xylanase on corn cob biomass (close to twofold) and Japanese beechwood biomass (up to 20-fold). Interestingly, a significant improvement in xylanase biomass degradation was observed following addition of the full-length multidomain enzyme from B. ovatus versus the addition of its two separated single domains, indicating an intramolecular synergy between the esterase domains. Despite high sequence similarities between the esterase domains from B. ovatus and F. johnsoniae, their addition to the xylanolytic reaction led to different degradation patterns. We demonstrated that multidomain carbohydrate esterases, targeting the non-carbohydrate decorations on different xylan polysaccharides, can considerably facilitate glycoside hydrolase-mediated hydrolysis of xylan and xylan-rich biomass. Moreover, we demonstrated for the first time a synergistic effect between the two fused catalytic domains of a multidomain carbohydrate esterase.

Journal ArticleDOI
TL;DR: The use of enzymes in many industrial applications has gained increasing importance in recent years due to their non-toxic, specific, and eco-friendly characteristics as discussed by the authors, however, two main reasons lim...
Abstract: The use of enzymes in many industrial applications has gained increasing importance in recent years due to their non-toxic, specific, and eco-friendly characteristics. However, two main reasons lim...

Journal ArticleDOI
TL;DR: Fluorescence probes designed and synthesised are the first to distinguish between esterase and chymotrypsin in live cells and are expected to be further practically applied in clinical medical testing.
Abstract: Esterase is an enzyme that catalyzes the hydrolysis of esters and is widely used to regulate various metabolic functions of organisms. However, chymotrypsin, which also has hydrolyzed ester bond, may interfere with esterase to play an important role in the organism. A series of visible fluorescent probes based on rhodamine (RHO) act as fluorophore and near-infrared fluorescent probes based on hemicyanine (CY-OH) act as fluorophore with 4-phenylpropionyl chloride (1), n-butyryl chloride (2), 4-bromobutyryl chloride (3) or 2-thiophene acetyl chloride (4) act as detection groups for distinguishing between esterase and chymotrypsin in live cells were designed and synthesis (RHO-n and CY-OH-n (n=1-4)). These probes show good stability and weak red fluorescence. Visible fluorescent probes RHO-n have fluorescence-enhancing (weak red fluorescence to strong red fluorescence) response to esterase in 20 min and chymotrypsin in 140 min (RHO-1); while near-infrared fluorescent probes CY-OH-n have ratiometric fluorescent (red-shift from ∼657 nm to ∼703 nm) response to esterase in 0.83 min and chymotrypsin in 15 min (CY-OH-1). As far as we know, these fluorescent probes are the first to distinguish between esterase and chymotrypsin. Moreover, these eight fluorescent probes have also been applied to live cell imaging and are expected to be further practically applied in clinical medical testing.

Journal ArticleDOI
TL;DR: CYOH-6 (six-membered ring) has been successfully used to target esterase in mitochondria and distinguish between dead cells (esterase inactivation) and live cells, which proves that these probes have good prospects for clinical biomedical applications.
Abstract: A series of multifunctional ratiometric near-infrared fluorescent probes (CYOH-3, CYOH-4, CYOH-5, and CYOH-6) for esterase detection are designed by gradually changing the deflection of the plane twist in the molecule. These probes are composed of different ring-structure trigger groups (from three-membered ring to six-membered ring) and the same luminescent group CYOH. These probes show maximum absorption at ∼585 nm and a fluorescence emission peak at ∼655 ± 5 nm. In the presence of esterase, the probes were hydrolyzed to expose the fluorophore CYOH (λabs = 690 nm, λem = 710 ± 5 nm), thus exhibiting ratiometric near-infrared fluorescence. The probe CYOH-6 has lower plane deflection angle and better ratiometric (R = I710±5nm/I657±4nm) fluorescence properties than probes CYOH-3, CYOH-4, and CYOH-5. CYOH-6 (six-membered ring) has been successfully used to target esterase in mitochondria and distinguish between dead cells (esterase inactivation) and live cells. In addition, CYOH-6 has been well used for monitoring of esterase activity in zebrafish and mice, which proves that these probes have good prospects for clinical biomedical applications.

Journal ArticleDOI
TL;DR: Results show that CE5 family can serve as a source of enzymes for in planta reduction of recalcitrance to saccharification and improved cellulose accessibility for wood from transgenic plants compared to wood from wild-type plants.
Abstract: Fast-growing broad-leaf tree species can serve as feedstocks for production of bio-based chemicals and fuels through biochemical conversion of wood to monosaccharides. This conversion is hampered by the xylan acetylation pattern. To reduce xylan acetylation in the wood, the Hypocrea jecorina acetyl xylan esterase (HjAXE) from carbohydrate esterase (CE) family 5 was expressed in hybrid aspen under the control of the wood-specific PtGT43B promoter and targeted to the secretory pathway. The enzyme was predicted to deacetylate polymeric xylan in the vicinity of cellulose due to the presence of a cellulose-binding module. Cell-wall-bound protein fractions from developing wood of transgenic plants were capable of releasing acetyl from finely ground wood powder, indicative of active AXE present in cell walls of these plants, whereas no such activity was detected in wild-type plants. The transgenic lines grew in height and diameter as well as wild-type trees, whereas their internodes were slightly shorter, indicating higher leaf production. The average acetyl content in the wood of these lines was reduced by 13%, mainly due to reductions in di-acetylated xylose units, and in C-2 and C-3 mono-acetylated xylose units. Analysis of soluble cell wall polysaccharides revealed a 4% reduction in the fraction of xylose units and an 18% increase in the fraction of glucose units, whereas the contents of cellulose and lignin were not affected. Enzymatic saccharification of wood from transgenic plants resulted in 27% higher glucose yield than for wild-type plants. Brunauer-Emmett-Teller (BET) analysis and Simons' staining pointed toward larger surface area and improved cellulose accessibility for wood from transgenic plants compared to wood from wild-type plants, which could be achieved by HjAXE deacetylating xylan bound to cellulose. The results show that CE5 family can serve as a source of enzymes for in planta reduction of recalcitrance to saccharification.

Journal ArticleDOI
TL;DR: The investigation of the thermostable, dual-function xylanase-glucuronoyl esterase enzyme CkXyn10C-GE15A from the hyperthermophilic bacterium Caldicellulosiruptor kristjanssonii shows that it is a promising candidate for industrial processes, with both catalytic domains exhibiting melting temperatures over 70 °C.
Abstract: Efficient degradation of lignocellulosic biomass has become a major bottleneck in industrial processes which attempt to use biomass as a carbon source for the production of biofuels and materials. To make the most effective use of the source material, both the hemicellulosic as well as cellulosic parts of the biomass should be targeted, and as such both hemicellulases and cellulases are important enzymes in biorefinery processes. Using thermostable versions of these enzymes can also prove beneficial in biomass degradation, as they can be expected to act faster than mesophilic enzymes and the process can also be improved by lower viscosities at higher temperatures, as well as prevent the introduction of microbial contamination. This study presents the investigation of the thermostable, dual-function xylanase-glucuronoyl esterase enzyme CkXyn10C-GE15A from the hyperthermophilic bacterium Caldicellulosiruptor kristjanssonii. Biochemical characterization of the enzyme was performed, including assays for establishing the melting points for the different protein domains, activity assays for the two catalytic domains, as well as binding assays for the multiple carbohydrate-binding domains present in CkXyn10C-GE15A. Although the enzyme domains are naturally linked together, when added separately to biomass, the expected boosting of the xylanase action was not seen. This lack of intramolecular synergy might suggest, together with previous data, that increased xylose release is not the main beneficial trait given by glucuronoyl esterases. Due to its thermostability, CkXyn10C-GE15A is a promising candidate for industrial processes, with both catalytic domains exhibiting melting temperatures over 70 °C. Of particular interest is the glucuronoyl esterase domain, as it represents the first studied thermostable enzyme displaying this activity.

Journal ArticleDOI
TL;DR: The promising features of the recombinant estHIJ underpin its potential in several fields, e.g., the synthesis of pharmaceutical compounds and the food industry.

Journal ArticleDOI
TL;DR: Overall, the present work demonstrates an effective esterase probe which can be applied as a reliable tool to monitor mitochondrial esterases, Benefiting from the ratiometric property, high specificity and low cytotoxicity.

Journal ArticleDOI
TL;DR: Results suggest a great potential of enzyme production in low cost fermentative media to act as biocatalysts in PET hydrolysis reactions, and lipase and esterase production were intensified in supplemented samples.
Abstract: Yarrowia lipolytica is a yeast that presents high biotechnological potential due to its ability to produce many metabolites, among them lipases and esterases, which are important industrial biocata

Journal ArticleDOI
TL;DR: The results obtained from the study demonstrate the potential of Pseudomonas aeruginosa strain S3 and its enzymes in development of high efficient system of PLA biodegradation and recovery processes.

Journal ArticleDOI
TL;DR: Four ascomycete enzymes from CE1_SF1 and SF2 were heterologously produced in Pichia pastoris and characterized with respect to their biochemical properties and substrate preference toward different model and plant biomass substrates.
Abstract: The fungal members of Carbohydrate Esterase family 1 (CE1) from the CAZy database include both acetyl xylan esterases (AXEs) and feruloyl esterases (FAEs) AXEs and FAEs are essential auxiliary enzymes to unlock the full potential of feedstock They are being used in many biotechnology applications including food and feed, pulp and paper, and biomass valorization AXEs catalyze the hydrolysis of acetyl group from xylan, while FAEs release ferulic and other hydroxycinnamic acids from xylan and pectin Previously, we reported a phylogenetic analysis for the fungal members of CE1, establishing five subfamilies (CE1_SF1-SF5) Currently, the characterized AXEs are in the subfamily CE1_SF1, whereas CE1_SF2 contains mainly characterized FAEs These two subfamilies are more related to each other than to the other subfamilies and are predicted to have evolved from a common ancestor, but target substrates with a different molecular structure In this study, four ascomycete enzymes from CE1_SF1 and SF2 were heterologously produced in Pichia pastoris and characterized with respect to their biochemical properties and substrate preference toward different model and plant biomass substrates The selected enzymes from CE1_SF1 only exhibited AXE activity, whereas the one from CE1_SF2 possessed dual FAE/AXE activity This dual activity enzyme also showed broad substrate specificity toward model substrates for FAE activity and efficiently released both acetic acid and ferulic acid (∼50%) from wheat arabinoxylan and wheat bran which was pre-treated with a commercial xylanase These fungal AXEs and FAEs also showed promising biochemical properties, eg, high stability over a wide pH range and retaining more than 80% of their residual activity at pH 60-90 These newly characterized fungal AXEs and FAEs from CE1 have high potential for biotechnological applications In particular as an additional ingredient for enzyme cocktails to remove the ester-linked decorations which enables access for the backbone degrading enzymes Among these novel enzymes, the dual FAE/AXE activity enzyme also supports the evolutionary relationship of CE1_SF1 and SF2

Journal ArticleDOI
TL;DR: Analysis of amino acid sequences suggests that GELP77 is phylogenetically distant from the other 104 GDSL-type esterase/lipase genes in Arabidopsis and that GelP77 orthologs are present in various plant species, and results indicate that G ELP77 regulates pollen wall characteristics inArabidopsis.

Journal ArticleDOI
TL;DR: The activity of lipases in dry organic solvents as a criterion is probed on a minimal α/β hydrolase fold enzyme, the Bacillus subtilis lipase A (BSLA), and compared to Candida antarctica lipase B (CALB), a proven lipase, which demonstrates the value of this additional parameter to distinguish between lipases and esterases.
Abstract: The question of how to distinguish between lipases and esterases is about as old as the definition of the subclassification is. Many different criteria have been proposed to this end, all indicative but not decisive. Here, the activity of lipases in dry organic solvents as a criterion is probed on a minimal α/β hydrolase fold enzyme, the Bacillus subtilis lipase A (BSLA), and compared to Candida antarctica lipase B (CALB), a proven lipase. Both hydrolases show activity in dry solvents and this proves BSLA to be a lipase. Overall, this demonstrates the value of this additional parameter to distinguish between lipases and esterases. Lipases tend to be active in dry organic solvents, while esterases are not active under these circumstances.

Journal ArticleDOI
TL;DR: The detection and quantification of esterase activity in the supernatant and the relationship between the percentage of esTERase activity quantified and the amount of carotenoids extracted indicate that the extraction of astaxanthin was mediated by enzymatic ester enzyme activity triggered by PEF during incubation.
Abstract: The aim of this study was to evaluate the potential of pulsed electric fields (PEF) to improve the extraction of the lipid-soluble astaxanthin from fresh biomass of a wild-type (CECT 11028) and mutant (ATCC 74219) Xanthophyllomyces dendrorhous strain using ethanol as solvent. Inactivation and propidium uptake studies revealed that inactivation is a good index for estimated the proportion of irreversible permeabilized cells when inactivation is higher than 70% in the two strains. Ethanol was ineffective for extracting carotenoids from the PEF-treated cells (20 kV/cm, 135 μs) of the two strains. However, after aqueous incubation of PEF-treated X. dendrorhous ATCC 74219 cells for 12 h, up to 2.4 ± 0.05 mg/g dried weight (d.w.) of carotenoids were extracted in ethanol. From total carotenoid extracted, around 84% corresponded to all-trans astaxanthin. The detection and quantification of esterase activity in the supernatant and the relationship between the percentage of esterase activity quantified and the amount of carotenoids extracted indicate that the extraction of astaxanthin was mediated by enzymatic esterase activity triggered by PEF during incubation. On the other hand, the formation of a large lipid globule into the cytoplasm of PEF-treated X. dendrorhous CECT 11028 cells during aqueous incubation prevented carotenoid extraction. The process developed in this investigation represents a more sustainable and greener method that those previously used for extracting astaxanthin from yeast.

Journal ArticleDOI
TL;DR: FD inoculant confirmed esterase activity on rye silage harvested at dough stage, while AT inoculants could not be confirmed with antifungal activity due to the absence of mold in all silages.
Abstract: OBJECTIVE This study was conducted to confirm the effects of new inoculants producing-antifungal or esterase substances on rye silage and its rumen fermentation indices by comparing wild with mutated types. METHODS Rye harvested at dough stage was ensiled into 3 L mini bucket silo (1 kg) for 90 d in triplicate following: distilled water at 20 μL/g (CON); Lactobacillus brevis 100D8 (AT) and its inactivation of antifungal genes (AT-m) at 1.2×105 cfu/g, respectively; and Leuconostoc holzapfelii 5H4 (FD) and its inactivation of esterase genes (FD-est) at 1.0×105 cfu/g, respectively. After silo opened, silage was sub-sampled for the analysis of ensiling quality and its rumen fermentation indices. RESULTS Among the wild type inoculants (CON vs AT vs FD), FD inoculant had higher (p<0.05) in vitro digestibilities of dry matter and neutral detergent fiber, the total degradable fraction, and total volatile fatty acid in rumen, while AT inoculant had higher (p<0.05) lactate, acetate, and lactic acid bacteria in silage. Silage pH and the potentially degradable fraction in rumen increased (p<0.05) by inactivation of antifungal activity (AT vs AT-m), but lactate, acetate, and lactic acid bacteria of silage decreased (p<0.05). In silage, acetate increased (p<0.05) by inactivation of esterase activity (FD vs FD-est) with decreases (p<0.05) of pH, ammonia-N, lactate, and yeast. Moreover, inactivation of esterase activity clearly decreased (p<0.05) in vitro digestibilities of dry matter and neutral detergent fiber, the total degradable fraction, and total volatile fatty acid in the rumen. CONCLUSION This study concluded that FD inoculant confirmed esterase activity on rye silage harvested at dough stage, while AT inoculant could not be confirmed with antifungal activity due to the absence of mold in all silages.

Journal ArticleDOI
17 Feb 2020-Analyst
TL;DR: A simple benzothiazole-based probe, EP, which can monitor esterase activity both in vitro and in living cells and can be used to evaluate the health status of cells and discriminate living and dead cells effectively is synthesized.
Abstract: The discrimination of living and dead cells shows great importance in the development of biology, pathology, medicine, and pharmacology research. Herein, we synthesized a simple benzothiazole-based probe, EP, which was characterized via1H NMR (hydrogen nuclear magnetic resonance) spectroscopy, 13C NMR (carbon nuclear magnetic resonance) spectroscopy and HRMS (high-resolution mass spectroscopy). The fluorescence changes in response to esterase were characterized via fluorescence spectroscopy. EP exhibited a 70-fold fluorescence enhancement in the presence of esterase and possessed a very low limit of detection (4.73 × 10−5 U mL−1). EP also showed high selectivity to esterase compared to other biological species. Bright fluorescence appeared in living cells, which was activated by esterase when incubated with EP. In paraformaldehyde or H2O2 pretreated cells, the fluorescence became very weak since esterase became inactive in these cells. In summary, the EP probe can monitor esterase activity both in vitro and in living cells and can be used to evaluate the health status of cells and discriminate living and dead cells effectively.

Journal ArticleDOI
TL;DR: The first hormone-sensitive lipase (HSL)-like esterase from a Glaciozyma species, a psychrophilic yeast designated as GlaEst12-like Esterase is reported, which showed unusual properties with other enzymes from psychrophobic origin since it showed an optimal temperature ranged between 50–60 ◦C and was stable at alkaline pH conditions.
Abstract: Microorganisms, especially those that survive in extremely cold places such as Antarctica, have gained research attention since they produce a unique feature of the protein, such as being able to withstand at extreme temperature, salinity, and pressure, that make them desired for biotechnological application. Here, we report the first hormone-sensitive lipase (HSL)-like esterase from a Glaciozyma species, a psychrophilic yeast designated as GlaEst12-like esterase. In this study, the putative lipolytic enzyme was cloned, expressed in E. coli, purified, and characterised for its biochemical properties. Protein sequences analysis showed that GlaEst12 shared about 30% sequence identity with chain A of the bacterial hormone-sensitive lipase of E40. It belongs to the H group since it has the conserved motifs of Histidine-Glycine-Glycine-Glycine (HGGG)and Glycine-Aspartate-Serine-Alanine-Glycine (GDSAG) at the amino acid sequences. The recombinant GlaEst12 was successfully purified via one-step Ni-Sepharose affinity chromatography. Interestingly, GlaEst12 showed unusual properties with other enzymes from psychrophilic origin since it showed an optimal temperature ranged between 50–60 °C and was stable at alkaline pH conditions. Unlike other HSL-like esterase, this esterase showed higher activity towards medium-chain ester substrates rather than shorter chain ester. The 3D structure of GlaEst12, predicted by homology modelling using Robetta software, showed a secondary structure composed of mainly α/β hydrolase fold, with the catalytic residues being found at Ser232, Glu341, and His371.

Journal ArticleDOI
TL;DR: In this paper, two precursors from ethylene diamine were prepared and further condensed with different aromatic aldehydes yielded fourteen different compounds, one of which was characterized with single crystal X-Ray diffraction (SC-XRD) technique, while the structures of all others were determined with FTIR and NMR (1H and 13C) spectroscopy.

Journal ArticleDOI
13 Jan 2020-PLOS ONE
TL;DR: It was found that IBU and TCS had no acute toxic effects on reactor biomass concentration and continuous exposure to IBU, TCS and their mixtures increased the activities of glutathione s-transferase (GST) and esterase as a response to oxidative damage.
Abstract: The relevant information about the impacts caused by presence of emerging pollutants in mixtures on the ecological environment, especially on the more vulnerable compartments such as activated sludge (AS) is relatively limited. This study investigated the effect of ibuprofen (IBU) and triclosan (TCS), alone and in combination to the performance and enzymatic activity of AS bacterial community. The assays were carried out in a pilot AS reactor operating for two-weeks under continuous dosage of pollutants. The microbial activity was tracked by measuring oxygen uptake rate, esterase activity, oxidative stress and antioxidant enzyme activities. It was found that IBU and TCS had no acute toxic effects on reactor biomass concentration. TCS led to significant decrease of COD removal efficiency, which dropped from 90% to 35%. Continuous exposure to IBU, TCS and their mixtures increased the activities of glutathione s-transferase (GST) and esterase as a response to oxidative damage. A high increase in GST activity was associated with non-reversible toxic damage while peaks of esterase activity combined with moderate GST increase were attributed to an adaptive response.