scispace - formally typeset
Search or ask a question
Topic

Esterase

About: Esterase is a research topic. Over the lifetime, 7622 publications have been published within this topic receiving 168270 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results show that FAE-III and the xylanase act together to break down feruloylated plant cell-wall polysaccharides to give a high yield of ferulic acid.
Abstract: Ferulic acid was efficiently released from a wheat bran preparation by a ferulic acid esterase from Aspergillus niger (FAE-III) when incubated together with a Trichoderma viride xylanase (a maximum of 95% total ferulic acid released after 5 h incubation). FAE-III by itself could release ferulic acid but at a level almost 24-fold lower than that obtained in the presence of the xylanase (2 U). Release of ferulic acid was proportional to the FAE-III concentration between 0.1 U and 1.3 U, but the presence of low levels of xylanase (0.1 U) increased the amount of ferulic acid released 6-fold. Total sugar release was not influenced by the action of FAE-III on the wheat bran, but the rate of release of the apparent end-products of xylanase action (xylose and xylobiose) was elevated by the presence of the esterase. The results show that FAE-III and the xylanase act together to break down feruloylated plant cell-wall polysaccharides to give a high yield of ferulic acid.

207 citations

Journal ArticleDOI
TL;DR: The concentration of aspirin relative to salicylate in the circulation may be affected by individual variation in esterase levels and the relative roles of the different esterases, and this may influence the overall pharmacological effect.
Abstract: Esterases, hydrolases which split ester bonds, hydrolyse a number of compounds used as drugs in humans. The enzymes involved are classified broadly as cholinesterases (including acetylcholinesterase), carboxylesterases, and arylesterases, but apart from acetylcholinesterase, their biological function is unknown. The acetylcholinesterase present in nerve endings involved in neurotransmission is inhibited by anticholinesterase drugs, e.g. neostigmine, and by organophosphorous compounds (mainly insecticides). Cholinesterases are primarily involved in drug hydrolysis in the plasma, arylesterases in the plasma and red blood cells, and carboxylesterases in the liver, gut and other tissues. The esterases exhibit specificities for certain substrates and inhibitors but a drug is often hydrolysed by more than one esterase at different sites. Aspirin (acetylsalicylic acid), for example, is hydrolysed to salicylate by carboxylesterases in the liver during the first-pass. Only 60% of an oral dose reaches the systemic circulation where it is hydrolysed by plasma cholinesterases and albumin and red blood cell arylesterases. Thus, the concentration of aspirin relative to salicylate in the circulation may be affected by individual variation in esterase levels and the relative roles of the different esterases, and this may influence the overall pharmacological effect. Other drugs have been less extensively investigated than aspirin and these include heroin (diacetylmorphine), suxamethonium (succinylcholine), clofibrate, carbimazole, procaine and other local anaesthetics. Ester prodrugs are widely used to improve absorption of drugs and in depot preparations. The active drug is released by hydrolysis by tissue carboxylesterases. Individual differences in esterase activity may be genetically determined, as is the case with atypical cholinesterases and the polymorphic distribution of serum paraoxonase and red blood cell esterase D. Disease states may also alter esterase activity.

207 citations

Journal ArticleDOI
TL;DR: In this article, the structure of the major feruloyl compound was identified as O -(5- O -feruloyls-α- l -arabinofuranosyl)-(1→3)- O -β- d -xylopyranosyl-(1→4)- d -opyranose on the basis of 13 C-n.m.r.

206 citations

Journal ArticleDOI
TL;DR: Trans-feruloyl and trans-p-coumaroyl esterases were found in the culture filtrates of two monocentric and three polycentric isolates of anaerobic rumen fungi and results of microscopic observations indicated that fungal isolates degraded primarily unlignified cell walls in leaf blades and stems.
Abstract: Trans-feruloyl and trans-p-coumaroyl esterases were found in the culture filtrates of two monocentric (Piromyces MC-1, Neocallimastix MC-2) and three polycentric (Orpinomyces PC-2, Orpinomyces PC-3, and PC-1, an unnamed genus with uniflagellated zoospores) isolates of anaerobic rumen fungi. Treatment of cell walls of Coastal bermudagrass shoots with the filtrates released the trans isomers of ferulic and p-coumaric acids; results of microscopic observations indicated that fungal isolates degraded primarily unlignified cell walls in leaf blades and stems. A greater proportion of ferulic than p-coumaric acid was released by this treatment when compared with the amounts of the acids released by saponification of the walls with 1 M NaOH. The filtrates also showed esterase activities against the trans isomers of methyl ferulate and methyl p-coumarate, with ferulic acid being released at a faster rate than p-coumaric acid. Assays for other cell-wall-degrading enzymes (xylanase, β-xylosidase, α-l-arabinosidase, cellulase, β-glucosidase) indicated that only β-xylosidase correlated with ferulate and p-coumarate esterase activities. The monocentric isolate MC-2 had the highest esterase activity against both the plant cell wall and methyl ester substrates and the highest specific activities of acetyl esterase, β-xylosidase, α-l-arabinosidase, cellulase and β-glucosidase. Isolate MC-2 produced substantially greater amounts of feruloyl and p-coumaroyl esterase when the growth substrate contained higher levels of saponifiable ferulic and p-coumaric acids.

204 citations

Journal ArticleDOI
TL;DR: It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold); in vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind toCry1Ac protoxin and activated toxin.
Abstract: In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed.

202 citations


Network Information
Related Topics (5)
Enzyme
32.8K papers, 1.1M citations
90% related
Amino acid
124.9K papers, 4M citations
86% related
Peptide sequence
84.1K papers, 4.3M citations
82% related
Glutathione
42.5K papers, 1.8M citations
82% related
Protein subunit
33.2K papers, 1.7M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202391
2022209
202183
2020112
2019107
2018129