scispace - formally typeset
Search or ask a question
Topic

Esterase

About: Esterase is a research topic. Over the lifetime, 7622 publications have been published within this topic receiving 168270 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The crystal structure and biochemical properties of the N-terminal catalytic module of CtCes3-1, a thermostable acetyl-specific esterase that exhibits a strong preference for acetylated xylan, are reported.

49 citations

Journal ArticleDOI
TL;DR: EstHE1 has the thermal stability and salt tolerance necessary for use as an industrial enzyme and also maintained activity in high concentrations of NaCl, indicating that this esterase is salt-tolerant.
Abstract: Using a metagenome library constructed from a bacterial associated with a marine sponge Hyrtios erecta, we identified a novel esterase that belongs to the SGNH hydrolase superfamily of esterases. The substrate specificity of EstHE1 was determined using p-nitrophenyl (pNP) ester (C2: acetate, C4: butylate, C6: caproate, C12: laurate, C16: palmitate). EstHE1 exhibited activity against C2 (5.6 U/mg), C4 (5.1 U/mg), and C6 (2.8 U/mg) substrates. The optimal temperature for EstHE1 esterase activity of the pNP acetate substrate was 40°C, and EstHE1 retained 60% of its enzymatic activity in the 30-50°C range. This esterase showed moderate thermostability, retaining 58% of its activity even after preincubation for 12 h at 40°C. EstHE1 also maintained activity in high concentrations of NaCl, indicating that this esterase is salt-tolerant. Thus, EstHE1 has the thermal stability and salt tolerance necessary for use as an industrial enzyme.

49 citations

Journal ArticleDOI
TL;DR: The enzymes from MRL-TL could degrade various aliphatic polyesters; therefore, it might be applied for bioremediation in the polyesters-contaminated environments.

49 citations

Journal ArticleDOI
TL;DR: Certain strains of Staphylococcus aureus produce an enzyme capable of inactivating the bactericidal fatty acids produced in staphylitis abscesses by esterification to various alcohols, which appears to be the preferred substrate for cholesterol.
Abstract: Certain strains of Staphylococcus aureus produce an enzyme capable of inactivating the bactericidal fatty acids produced in staphylococcal abscesses by esterification to various alcohols. The enzyme, called FAME (fatty acid modifying enzyme), has a pH optimum between 5.5 and 6.0 and a temperature optimum of about 40 degrees C. Enzyme activity is not affected by edetic acid or by the presence or absence of sodium and potassium ions. Although FAME can utilise methanol, ethanol, 1-propanol, 2-propanol, 1-butanol or cholesterol as substrates, cholesterol appears to be the preferred substrate. FAME esterifies without being an esterase operating in reverse. Strains capable of producing the enzyme can synthesise it in trypticase soy broth and in a chemically defined medium, but not necessarily in equal amounts. FAME production is correlated with the ability of a strain to grow and survive within the tissues.

49 citations


Network Information
Related Topics (5)
Enzyme
32.8K papers, 1.1M citations
90% related
Amino acid
124.9K papers, 4M citations
86% related
Peptide sequence
84.1K papers, 4.3M citations
82% related
Glutathione
42.5K papers, 1.8M citations
82% related
Protein subunit
33.2K papers, 1.7M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202391
2022209
202183
2020112
2019107
2018129