scispace - formally typeset
Search or ask a question
Topic

Esterase

About: Esterase is a research topic. Over the lifetime, 7622 publications have been published within this topic receiving 168270 citations.


Papers
More filters
Journal ArticleDOI
05 Jun 1987-Science
TL;DR: DFP-treated INF-C bound specifically and irreversibly to cells expressing 9-O-acetylated sialic acids, providing a probe for a molecule that was hitherto very difficult to study.
Abstract: The influenza C virus (INF-C) hemagglutinin recognizes 9-O-acetyl-N-acetylneuraminic acid. The same protein contains the receptor-destroying enzyme (RDE), which is a 9-O-acetyl-esterase. The RDE was inactivated by the serine esterase inhibitor di-isopropyl fluorophosphate (DFP). [3H]DFP-labeling localized the active site to the heavy chain of the glycoprotein. DFP did not alter the hemagglutination or fusion properties of the protein, but markedly decreased infectivity of the virus, demonstrating that the RDE is important for primary infection. Finally, DFP-treated INF-C bound specifically and irreversibly to cells expressing 9-O-acetylated sialic acids. This provides a probe for a molecule that was hitherto very difficult to study.

97 citations

Journal ArticleDOI
TL;DR: The level of identity between the Est alpha 2(1) and the various Culex est beta (B1 and B2) cDNA alleles that have been cloned and sequenced suggests that the two esterase loci are closely related and arose originally from duplication of a common ancestral gene.

97 citations

Journal ArticleDOI
TL;DR: Results indicate that esterases and lipases, which are both active on soluble esters, can be differentiated by their value of Km, which supports the hypothesis of the existence in lipases of a particular surface domain that specifically interacts with lipid-water interfaces and contributes to the transfer a single substrate molecule from the organized lipid- water interface (supersubstrate) to the catalytic site of the enzyme.
Abstract: Carboxylesterases (Carboxyl ester hydrolase) include two groups of enzymes, namely non-specific esterases (EC 3.1.1.1) and lipases (EC 3.1.1.3) which have been early differentiated on the basis of their substrate specificity. Esterases hydrolyse solutions of water-soluble short acyl chain esters and are inactive against water-insoluble long chain triacylglycerols which, in turn, are specifically hydrolyzed by lipases. Based on the comparison of the primary structures, three families of sequence-related carboxylesterases, namely the lipoprotein lipase family (L-family), the hormonesensitive lipase family (H-family) and the cholinesterase family (C-family) have been identified. Using solutions and emulsions of vinyl, glyceryl and p-nitrophenyl esters, we have reinvestigated the kinetic properties of some esterases and lipases of the H- and C-families. Results indicate that esterases and lipases, which are both active on soluble esters, can be differentiated by their value of Km. Moreover, esterase, unlike lipases, are inactive against water-insoluble esters as vinyl laurate and trioctanoylglycerol. From the the comparison of structural features of sequence-related esterases and lipases, it appears that lipases, unlike esterases, display a significant difference in the distribution of hydrophobic amino acid residues at vicinity of their active site. This observation supports the hypothesis of the existence in lipases of a particular surface domain that specifically interacts with lipid-water interfaces and contributes to the transfer a single substrate molecule from the organized lipid-water interface (supersubstrate) to the catalytic site of the enzyme.

97 citations

Journal ArticleDOI
TL;DR: Thermodynamic analysis revealed that this Km increase was mainly the result of increased solubility of the synthetic peptide substrate in low-salt media, which dramatically increases the ground-state stability of the substrate, and prompted us to investigate the use of the protease in kinetically controlled peptide synthesis.

96 citations


Network Information
Related Topics (5)
Enzyme
32.8K papers, 1.1M citations
90% related
Amino acid
124.9K papers, 4M citations
86% related
Peptide sequence
84.1K papers, 4.3M citations
82% related
Glutathione
42.5K papers, 1.8M citations
82% related
Protein subunit
33.2K papers, 1.7M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202391
2022209
202183
2020112
2019107
2018129