scispace - formally typeset
Search or ask a question
Topic

Estimation theory

About: Estimation theory is a research topic. Over the lifetime, 35334 publications have been published within this topic receiving 1037566 citations.


Papers
More filters
Journal Article
TL;DR: In this paper, the authors describe the EM algorithm for finding the parameters of a mixture of Gaussian densities and a hidden Markov model (HMM) for both discrete and Gaussian mixture observation models.
Abstract: We describe the maximum-likelihood parameter estimation problem and how the ExpectationMaximization (EM) algorithm can be used for its solution. We first describe the abstract form of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2) finding the parameters of a hidden Markov model (HMM) (i.e., the Baum-Welch algorithm) for both discrete and Gaussian mixture observation models. We derive the update equations in fairly explicit detail but we do not prove any convergence properties. We try to emphasize intuition rather than mathematical rigor.

2,455 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a restricted maximum likelihood (reml) approach which takes into account the loss in degrees of freedom resulting from estimating fixed effects, and developed a satisfactory asymptotic theory for estimators of variance components.
Abstract: Recent developments promise to increase greatly the popularity of maximum likelihood (ml) as a technique for estimating variance components. Patterson and Thompson (1971) proposed a restricted maximum likelihood (reml) approach which takes into account the loss in degrees of freedom resulting from estimating fixed effects. Miller (1973) developed a satisfactory asymptotic theory for ml estimators of variance components. There are many iterative algorithms that can be considered for computing the ml or reml estimates. The computations on each iteration of these algorithms are those associated with computing estimates of fixed and random effects for given values of the variance components.

2,440 citations

Journal ArticleDOI
TL;DR: The performance of this method for removing noise from digital images substantially surpasses that of previously published methods, both visually and in terms of mean squared error.
Abstract: We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vector and a hidden positive scalar multiplier. The latter modulates the local variance of the coefficients in the neighborhood, and is thus able to account for the empirically observed correlation between the coefficient amplitudes. Under this model, the Bayesian least squares estimate of each coefficient reduces to a weighted average of the local linear estimates over all possible values of the hidden multiplier variable. We demonstrate through simulations with images contaminated by additive white Gaussian noise that the performance of this method substantially surpasses that of previously published methods, both visually and in terms of mean squared error.

2,439 citations

Journal ArticleDOI
TL;DR: A framework for maximum a posteriori (MAP) estimation of hidden Markov models (HMM) is presented, and Bayesian learning is shown to serve as a unified approach for a wide range of speech recognition applications.
Abstract: In this paper, a framework for maximum a posteriori (MAP) estimation of hidden Markov models (HMM) is presented. Three key issues of MAP estimation, namely, the choice of prior distribution family, the specification of the parameters of prior densities, and the evaluation of the MAP estimates, are addressed. Using HMM's with Gaussian mixture state observation densities as an example, it is assumed that the prior densities for the HMM parameters can be adequately represented as a product of Dirichlet and normal-Wishart densities. The classical maximum likelihood estimation algorithms, namely, the forward-backward algorithm and the segmental k-means algorithm, are expanded, and MAP estimation formulas are developed. Prior density estimation issues are discussed for two classes of applications/spl minus/parameter smoothing and model adaptation/spl minus/and some experimental results are given illustrating the practical interest of this approach. Because of its adaptive nature, Bayesian learning is shown to serve as a unified approach for a wide range of speech recognition applications. >

2,430 citations

Book
02 Sep 2008
TL;DR: This chapter discusses the design and exploration of a Surrogate-based kriging model, and some of the techniques used in that process, as well as some new approaches to designing models based on the data presented.
Abstract: Preface. About the Authors. Foreword. Prologue. Part I: Fundamentals. 1. Sampling Plans. 1.1 The 'Curse of Dimensionality' and How to Avoid It. 1.2 Physical versus Computational Experiments. 1.3 Designing Preliminary Experiments (Screening). 1.3.1 Estimating the Distribution of Elementary Effects. 1.4 Designing a Sampling Plan. 1.4.1 Stratification. 1.4.2 Latin Squares and Random Latin Hypercubes. 1.4.3 Space-filling Latin Hypercubes. 1.4.4 Space-filling Subsets. 1.5 A Note on Harmonic Responses. 1.6 Some Pointers for Further Reading. References. 2. Constructing a Surrogate. 2.1 The Modelling Process. 2.1.1 Stage One: Preparing the Data and Choosing a Modelling Approach. 2.1.2 Stage Two: Parameter Estimation and Training. 2.1.3 Stage Three: Model Testing. 2.2 Polynomial Models. 2.2.1 Example One: Aerofoil Drag. 2.2.2 Example Two: a Multimodal Testcase. 2.2.3 What About the k -variable Case? 2.3 Radial Basis Function Models. 2.3.1 Fitting Noise-Free Data. 2.3.2 Radial Basis Function Models of Noisy Data. 2.4 Kriging. 2.4.1 Building the Kriging Model. 2.4.2 Kriging Prediction. 2.5 Support Vector Regression. 2.5.1 The Support Vector Predictor. 2.5.2 The Kernel Trick. 2.5.3 Finding the Support Vectors. 2.5.4 Finding . 2.5.5 Choosing C and epsilon. 2.5.6 Computing epsilon : v -SVR 71. 2.6 The Big(ger) Picture. References. 3. Exploring and Exploiting a Surrogate. 3.1 Searching the Surrogate. 3.2 Infill Criteria. 3.2.1 Prediction Based Exploitation. 3.2.2 Error Based Exploration. 3.2.3 Balanced Exploitation and Exploration. 3.2.4 Conditional Likelihood Approaches. 3.2.5 Other Methods. 3.3 Managing a Surrogate Based Optimization Process. 3.3.1 Which Surrogate for What Use? 3.3.2 How Many Sample Plan and Infill Points? 3.3.3 Convergence Criteria. 3.3.4 Search of the Vibration Isolator Geometry Feasibility Using Kriging Goal Seeking. References. Part II: Advanced Concepts. 4. Visualization. 4.1 Matrices of Contour Plots. 4.2 Nested Dimensions. Reference. 5. Constraints. 5.1 Satisfaction of Constraints by Construction. 5.2 Penalty Functions. 5.3 Example Constrained Problem. 5.3.1 Using a Kriging Model of the Constraint Function. 5.3.2 Using a Kriging Model of the Objective Function. 5.4 Expected Improvement Based Approaches. 5.4.1 Expected Improvement With Simple Penalty Function. 5.4.2 Constrained Expected Improvement. 5.5 Missing Data. 5.5.1 Imputing Data for Infeasible Designs. 5.6 Design of a Helical Compression Spring Using Constrained Expected Improvement. 5.7 Summary. References. 6. Infill Criteria With Noisy Data. 6.1 Regressing Kriging. 6.2 Searching the Regression Model. 6.2.1 Re-Interpolation. 6.2.2 Re-Interpolation With Conditional Likelihood Approaches. 6.3 A Note on Matrix Ill-Conditioning. 6.4 Summary. References. 7. Exploiting Gradient Information. 7.1 Obtaining Gradients. 7.1.1 Finite Differencing. 7.1.2 Complex Step Approximation. 7.1.3 Adjoint Methods and Algorithmic Differentiation. 7.2 Gradient-enhanced Modelling. 7.3 Hessian-enhanced Modelling. 7.4 Summary. References. 8. Multi-fidelity Analysis. 8.1 Co-Kriging. 8.2 One-variable Demonstration. 8.3 Choosing X c and X e . 8.4 Summary. References. 9. Multiple Design Objectives. 9.1 Pareto Optimization. 9.2 Multi-objective Expected Improvement. 9.3 Design of the Nowacki Cantilever Beam Using Multi-objective, Constrained Expected Improvement. 9.4 Design of a Helical Compression Spring Using Multi-objective, Constrained Expected Improvement. 9.5 Summary. References. Appendix: Example Problems. A.1 One-Variable Test Function. A.2 Branin Test Function. A.3 Aerofoil Design. A.4 The Nowacki Beam. A.5 Multi-objective, Constrained Optimal Design of a Helical Compression Spring. A.6 Novel Passive Vibration Isolator Feasibility. References. Index.

2,335 citations


Network Information
Related Topics (5)
Estimator
97.3K papers, 2.6M citations
90% related
Optimization problem
96.4K papers, 2.1M citations
86% related
Artificial neural network
207K papers, 4.5M citations
86% related
Feature extraction
111.8K papers, 2.1M citations
84% related
Nonlinear system
208.1K papers, 4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023177
2022507
2021960
20201,124
20191,170
20181,157