scispace - formally typeset
Search or ask a question
Topic

Evapotranspiration

About: Evapotranspiration is a research topic. Over the lifetime, 21858 publications have been published within this topic receiving 644354 citations.


Papers
More filters
Book
01 Jan 1998
TL;DR: In this paper, an updated procedure for calculating reference and crop evapotranspiration from meteorological data and crop coefficients is presented, based on the FAO Penman-Monteith method.
Abstract: (First edition: 1998, this reprint: 2004). This publication presents an updated procedure for calculating reference and crop evapotranspiration from meteorological data and crop coefficients. The procedure, first presented in FAO Irrigation and Drainage Paper No. 24, Crop water requirements, in 1977, allows estimation of the amount of water used by a crop, taking into account the effect of the climate and the crop characteristics. The publication incorporates advances in research and more accurate procedures for determining crop water use as recommended by a panel of high-level experts organised by FAO in May 1990. The first part of the guidelines includes procedures for determining reference crop evapotranspiration according to the FAO Penman-Monteith method. These are followed by updated procedures for estimating the evapotranspiration of different crops for different growth stages and ecological conditions.

21,958 citations

Journal ArticleDOI
TL;DR: In this article, a new climatic drought index, the standardized precipitation evapotranspiration index (SPEI), is proposed, which combines multiscalar character with the capacity to include the effects of temperature variability on drought assessment.
Abstract: The authors propose a new climatic drought index: the standardized precipitation evapotranspiration index (SPEI). The SPEI is based on precipitation and temperature data, and it has the advantage of combining multiscalar character with the capacity to include the effects of temperature variability on drought assessment. The procedure to calculate the index is detailed and involves a climatic water balance, the accumulation of deficit/surplus at different time scales, and adjustment to a log-logistic probability distribution. Mathematically, the SPEI is similar to the standardized precipitation index (SPI), but it includes the role of temperature. Because the SPEI is based on a water balance, it can be compared to the self-calibrated Palmer drought severity index (sc-PDSI). Time series of the three indices were compared for a set of observatories with different climate characteristics, located in different parts of the world. Under global warming conditions, only the sc-PDSI and SPEI identified an...

5,088 citations

Journal ArticleDOI
TL;DR: In this paper, a generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM) is described.
Abstract: A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM) is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent and sensible heat fluxes at the land surface. The infiltration algorithm for the upper layer is essentially the same as for the single layer VIC model, while the lower layer drainage formulation is of the form previously implemented in the Max-Planck-Institut GCM. The model partitions the area of interest (e.g., grid cell) into multiple land surface cover types; for each land cover type the fraction of roots in the upper and lower zone is specified. Evapotranspiration consists of three components: canopy evaporation, evaporation from bare soils, and transpiration, which is represented using a canopy and architectural resistance formulation. Once the latent heat flux has been computed, the surface energy balance is iterated to solve for the land surface temperature at each time step. The model was tested using long-term hydrologic and climatological data for Kings Creek, Kansas to estimate and validate the hydrological parameters, and surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment (FIFE) intensive field campaigns in the summer-fall of 1987 to validate the surface energy fluxes.

3,297 citations

Journal ArticleDOI
TL;DR: In this paper, an equation is presented that estimates ETo from measured values of daily or mean values of maximum and minimum temperature. But this equation is compared with various other methods for estimating ETo.
Abstract: MEASURED lysimeter evapotranspiration of Alta fescue grass (a cool season grass) is taken as an index of reference crop evapotranspiration (ETo). An equation is presented that estimates ETo from measured values of daily or mean values of maximum and minimum temperature. This equation is compared with various other methods for estimating ETo. The equation was developed using eight years of daily lysimeter data from Davis, California and used to estimate values of ETo for other locations. Comparisons with other methods with measured cool season grass evapotranspiration at Aspendale, Australia; Lompoc, California; and Seabrook, New Jersey; with lysimeter data from Damin, Haiti; and with the modified Penman for various locations in Bangladesh indicated that the method usually does not require local calibration and that the estimated values are probably as reliable and useable as those from the other estimating methods used for comparison. Considering the scarcity of complete and reliable climatic data for estimating crop water requirements in developing countries, this proposed method can do much to improve irrigation planning design and scheduling in the developing countries.

3,252 citations

Journal ArticleDOI
TL;DR: The LPJ model as mentioned in this paper combines process-based, large-scale representations of terrestrial vegetation dynamics and land-atmosphere carbon and water exchanges in a modular framework, including feedback through canopy conductance between photosynthesis and transpiration and interactive coupling between these 'fast' processes and other ecosystem processes.
Abstract: The Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) combines process-based, large-scale representations of terrestrial vegetation dynamics and land-atmosphere carbon and water exchanges in a modular framework. Features include feedback through canopy conductance between photosynthesis and transpiration and interactive coupling between these 'fast' processes and other ecosystem processes including resource competition, tissue turnover, population dynamics, soil organic matter and litter dynamics and fire disturbance. Ten plants functional types (PFTs) are differentiated by physiological, morphological, phenological, bioclimatic and fire-response attributes. Resource competition and differential responses to fire between PFTs influence their relative fractional cover from year to year. Photosynthesis, evapotranspiration and soil water dynamics are modelled on a daily time step, while vegetation structure and PFT population densities are updated annually. Simulations have been made over the industrial period both for specific sites where field measurements were available for model evaluation, and globally on a 0.5degrees x 0.5degrees grid. Modelled vegetation patterns are consistent with observations, including remotely sensed vegetation structure and phenology. Seasonal cycles of net ecosystem exchange and soil moisture compare well with local measurements. Global carbon exchange fields used as input to an atmospheric tracer transport model (TM2) provided a good fit to observed seasonal cycles of CO2 concentration at all latitudes. Simulated inter-annual variability of the global terrestrial carbon balance is in phase with and comparable in amplitude to observed variability in the growth rate of atmospheric CO2 . Global terrestrial carbon and water cycle parameters (pool sizes and fluxes) lie within their accepted ranges. The model is being used to study past, present and future terrestrial ecosystem dynamics, biochemical and biophysical interactions between ecosystems and the atmosphere, and as a component of coupled Earth system models.

2,735 citations


Network Information
Related Topics (5)
Vegetation
49.2K papers, 1.4M citations
87% related
Soil water
97.8K papers, 2.9M citations
86% related
Land use
57K papers, 1.1M citations
84% related
Climate model
22.2K papers, 1.1M citations
83% related
Soil organic matter
39.8K papers, 1.5M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,890
20223,231
20211,271
20201,223
20191,230
20181,157