scispace - formally typeset
Search or ask a question
Topic

Evolution strategy

About: Evolution strategy is a research topic. Over the lifetime, 3538 publications have been published within this topic receiving 133172 citations. The topic is also known as: Evolution Strategy, ES.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper suggests a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties, and modify the definition of dominance in order to solve constrained multi-objective problems efficiently.
Abstract: Multi-objective evolutionary algorithms (MOEAs) that use non-dominated sorting and sharing have been criticized mainly for: (1) their O(MN/sup 3/) computational complexity (where M is the number of objectives and N is the population size); (2) their non-elitism approach; and (3) the need to specify a sharing parameter. In this paper, we suggest a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties. Specifically, a fast non-dominated sorting approach with O(MN/sup 2/) computational complexity is presented. Also, a selection operator is presented that creates a mating pool by combining the parent and offspring populations and selecting the best N solutions (with respect to fitness and spread). Simulation results on difficult test problems show that NSGA-II is able, for most problems, to find a much better spread of solutions and better convergence near the true Pareto-optimal front compared to the Pareto-archived evolution strategy and the strength-Pareto evolutionary algorithm - two other elitist MOEAs that pay special attention to creating a diverse Pareto-optimal front. Moreover, we modify the definition of dominance in order to solve constrained multi-objective problems efficiently. Simulation results of the constrained NSGA-II on a number of test problems, including a five-objective, seven-constraint nonlinear problem, are compared with another constrained multi-objective optimizer, and the much better performance of NSGA-II is observed.

37,111 citations

Journal ArticleDOI
TL;DR: The results of the classical engineering design problems and real application prove that the proposed GWO algorithm is applicable to challenging problems with unknown search spaces.

10,082 citations

Journal ArticleDOI
TL;DR: This paper puts forward two useful methods for self-adaptation of the mutation distribution - the concepts of derandomization and cumulation and reveals local and global search properties of the evolution strategy with and without covariance matrix adaptation.
Abstract: This paper puts forward two useful methods for self-adaptation of the mutation distribution - the concepts of derandomization and cumulation. Principle shortcomings of the concept of mutative strategy parameter control and two levels of derandomization are reviewed. Basic demands on the self-adaptation of arbitrary (normal) mutation distributions are developed. Applying arbitrary, normal mutation distributions is equivalent to applying a general, linear problem encoding. The underlying objective of mutative strategy parameter control is roughly to favor previously selected mutation steps in the future. If this objective is pursued rigorously, a completely derandomized self-adaptation scheme results, which adapts arbitrary normal mutation distributions. This scheme, called covariance matrix adaptation (CMA), meets the previously stated demands. It can still be considerably improved by cumulation - utilizing an evolution path rather than single search steps. Simulations on various test functions reveal local and global search properties of the evolution strategy with and without covariance matrix adaptation. Their performances are comparable only on perfectly scaled functions. On badly scaled, non-separable functions usually a speed up factor of several orders of magnitude is observed. On moderately mis-scaled functions a speed up factor of three to ten can be expected.

3,752 citations

Journal ArticleDOI
TL;DR: This article gives a comprehensive introduction into one of the main branches of evolutionary computation – the evolution strategies (ES) the history of which dates back to the 1960s in Germany.
Abstract: This article gives a comprehensive introduction into one of the main branches of evolutionary computation – the evolution strategies (ES) the history of which dates back to the 1960s in Germany Starting from a survey of history the philosophical background is explained in order to make understandable why ES are realized in the way they are Basic ES algorithms and design principles for variation and selection operators as well as theoretical issues are presented, and future branches of ES research are discussed

2,465 citations

Journal ArticleDOI
TL;DR: A novel evolutionary optimization strategy based on the derandomized evolution strategy with covariance matrix adaptation (CMA-ES), intended to reduce the number of generations required for convergence to the optimum, which results in a highly parallel algorithm which scales favorably with large numbers of processors.
Abstract: This paper presents a novel evolutionary optimization strategy based on the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). This new approach is intended to reduce the number of generations required for convergence to the optimum. Reducing the number of generations, i.e., the time complexity of the algorithm, is important if a large population size is desired: (1) to reduce the effect of noise; (2) to improve global search properties; and (3) to implement the algorithm on (highly) parallel machines. Our method results in a highly parallel algorithm which scales favorably with large numbers of processors. This is accomplished by efficiently incorporating the available information from a large population, thus significantly reducing the number of generations needed to adapt the covariance matrix. The original version of the CMA-ES was designed to reliably adapt the covariance matrix in small populations but it cannot exploit large populations efficiently. Our modifications scale up the efficiency to population sizes of up to 10n, where n is the problem dimension. This method has been applied to a large number of test problems, demonstrating that in many cases the CMA-ES can be advanced from quadratic to linear time complexity.

2,144 citations


Network Information
Related Topics (5)
Artificial neural network
207K papers, 4.5M citations
83% related
Optimization problem
96.4K papers, 2.1M citations
82% related
Support vector machine
73.6K papers, 1.7M citations
81% related
Fuzzy logic
151.2K papers, 2.3M citations
81% related
Robustness (computer science)
94.7K papers, 1.6M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20238
202230
2021129
2020150
2019156
2018132