scispace - formally typeset
Search or ask a question
Topic

Evolutionary algorithm

About: Evolutionary algorithm is a research topic. Over the lifetime, 35292 publications have been published within this topic receiving 897218 citations. The topic is also known as: EA.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper suggests a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties, and modify the definition of dominance in order to solve constrained multi-objective problems efficiently.
Abstract: Multi-objective evolutionary algorithms (MOEAs) that use non-dominated sorting and sharing have been criticized mainly for: (1) their O(MN/sup 3/) computational complexity (where M is the number of objectives and N is the population size); (2) their non-elitism approach; and (3) the need to specify a sharing parameter. In this paper, we suggest a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties. Specifically, a fast non-dominated sorting approach with O(MN/sup 2/) computational complexity is presented. Also, a selection operator is presented that creates a mating pool by combining the parent and offspring populations and selecting the best N solutions (with respect to fitness and spread). Simulation results on difficult test problems show that NSGA-II is able, for most problems, to find a much better spread of solutions and better convergence near the true Pareto-optimal front compared to the Pareto-archived evolution strategy and the strength-Pareto evolutionary algorithm - two other elitist MOEAs that pay special attention to creating a diverse Pareto-optimal front. Moreover, we modify the definition of dominance in order to solve constrained multi-objective problems efficiently. Simulation results of the constrained NSGA-II on a number of test problems, including a five-objective, seven-constraint nonlinear problem, are compared with another constrained multi-objective optimizer, and the much better performance of NSGA-II is observed.

37,111 citations

Book
01 Jan 2001
TL;DR: This text provides an excellent introduction to the use of evolutionary algorithms in multi-objective optimization, allowing use as a graduate course text or for self-study.
Abstract: From the Publisher: Evolutionary algorithms are relatively new, but very powerful techniques used to find solutions to many real-world search and optimization problems. Many of these problems have multiple objectives, which leads to the need to obtain a set of optimal solutions, known as effective solutions. It has been found that using evolutionary algorithms is a highly effective way of finding multiple effective solutions in a single simulation run. · Comprehensive coverage of this growing area of research · Carefully introduces each algorithm with examples and in-depth discussion · Includes many applications to real-world problems, including engineering design and scheduling · Includes discussion of advanced topics and future research · Features exercises and solutions, enabling use as a course text or for self-study · Accessible to those with limited knowledge of classical multi-objective optimization and evolutionary algorithms The integrated presentation of theory, algorithms and examples will benefit those working and researching in the areas of optimization, optimal design and evolutionary computing. This text provides an excellent introduction to the use of evolutionary algorithms in multi-objective optimization, allowing use as a graduate course text or for self-study.

12,134 citations

Journal ArticleDOI
TL;DR: The proof-of-principle results obtained on two artificial problems as well as a larger problem, the synthesis of a digital hardware-software multiprocessor system, suggest that SPEA can be very effective in sampling from along the entire Pareto-optimal front and distributing the generated solutions over the tradeoff surface.
Abstract: Evolutionary algorithms (EAs) are often well-suited for optimization problems involving several, often conflicting objectives. Since 1985, various evolutionary approaches to multiobjective optimization have been developed that are capable of searching for multiple solutions concurrently in a single run. However, the few comparative studies of different methods presented up to now remain mostly qualitative and are often restricted to a few approaches. In this paper, four multiobjective EAs are compared quantitatively where an extended 0/1 knapsack problem is taken as a basis. Furthermore, we introduce a new evolutionary approach to multicriteria optimization, the strength Pareto EA (SPEA), that combines several features of previous multiobjective EAs in a unique manner. It is characterized by (a) storing nondominated solutions externally in a second, continuously updated population, (b) evaluating an individual's fitness dependent on the number of external nondominated points that dominate it, (c) preserving population diversity using the Pareto dominance relationship, and (d) incorporating a clustering procedure in order to reduce the nondominated set without destroying its characteristics. The proof-of-principle results obtained on two artificial problems as well as a larger problem, the synthesis of a digital hardware-software multiprocessor system, suggest that SPEA can be very effective in sampling from along the entire Pareto-optimal front and distributing the generated solutions over the tradeoff surface. Moreover, SPEA clearly outperforms the other four multiobjective EAs on the 0/1 knapsack problem.

7,512 citations

Journal ArticleDOI
TL;DR: Experimental results have demonstrated that MOEA/D with simple decomposition methods outperforms or performs similarly to MOGLS and NSGA-II on multiobjective 0-1 knapsack problems and continuous multiobjectives optimization problems.
Abstract: Decomposition is a basic strategy in traditional multiobjective optimization. However, it has not yet been widely used in multiobjective evolutionary optimization. This paper proposes a multiobjective evolutionary algorithm based on decomposition (MOEA/D). It decomposes a multiobjective optimization problem into a number of scalar optimization subproblems and optimizes them simultaneously. Each subproblem is optimized by only using information from its several neighboring subproblems, which makes MOEA/D have lower computational complexity at each generation than MOGLS and nondominated sorting genetic algorithm II (NSGA-II). Experimental results have demonstrated that MOEA/D with simple decomposition methods outperforms or performs similarly to MOGLS and NSGA-II on multiobjective 0-1 knapsack problems and continuous multiobjective optimization problems. It has been shown that MOEA/D using objective normalization can deal with disparately-scaled objectives, and MOEA/D with an advanced decomposition method can generate a set of very evenly distributed solutions for 3-objective test instances. The ability of MOEA/D with small population, the scalability and sensitivity of MOEA/D have also been experimentally investigated in this paper.

6,657 citations

DOI
01 Jan 2001
TL;DR: An improved version of SPEA, namely SPEA2, is proposed, which incorporates in contrast to its predecessor a fine-grained fitness assignment strategy, a density estimation technique, and an enhanced archive truncation method.
Abstract: The Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999) is a relatively recent technique for finding or approximating the Pareto-optimal set for multiobjective optimization problems. In different studies (Zitzler and Thiele 1999; Zitzler, Deb, and Thiele 2000) SPEA has shown very good performance in comparison to other multiobjective evolutionary algorithms, and therefore it has been a point of reference in various recent investigations, e.g., (Corne, Knowles, and Oates 2000). Furthermore, it has been used in different applications, e.g., (Lahanas, Milickovic, Baltas, and Zamboglou 2001). In this paper, an improved version, namely SPEA2, is proposed, which incorporates in contrast to its predecessor a fine-grained fitness assignment strategy, a density estimation technique, and an enhanced archive truncation method. The comparison of SPEA2 with SPEA and two other modern elitist methods, PESA and NSGA-II, on different test problems yields promising results.

5,062 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
89% related
Artificial neural network
207K papers, 4.5M citations
87% related
Support vector machine
73.6K papers, 1.7M citations
87% related
Fuzzy logic
151.2K papers, 2.3M citations
86% related
Robustness (computer science)
94.7K papers, 1.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023587
20221,339
20211,847
20201,990
20192,055
20181,816