scispace - formally typeset
Topic

Evolutionary dynamics

About: Evolutionary dynamics is a(n) research topic. Over the lifetime, 3284 publication(s) have been published within this topic receiving 152767 citation(s).

...read more

Papers
  More

Open accessBook
Josef Hofbauer1, Karl Sigmund1Institutions (1)
01 Jan 1998-
Abstract: Every form of behavior is shaped by trial and error. Such stepwise adaptation can occur through individual learning or through natural selection, the basis of evolution. Since the work of Maynard Smith and others, it has been realized how game theory can model this process. Evolutionary game theory replaces the static solutions of classical game theory by a dynamical approach centered not on the concept of rational players but on the population dynamics of behavioral programs. In this book the authors investigate the nonlinear dynamics of the self-regulation of social and economic behavior, and of the closely related interactions among species in ecological communities. Replicator equations describe how successful strategies spread and thereby create new conditions that can alter the basis of their success, i.e., to enable us to understand the strategic and genetic foundations of the endless chronicle of invasions and extinctions that punctuate evolution. In short, evolutionary game theory describes when to escalate a conflict, how to elicit cooperation, why to expect a balance of the sexes, and how to understand natural selection in mathematical terms. Comprehensive treatment of ecological and game theoretic dynamics Invasion dynamics and permanence as key concepts Explanation in terms of games of things like competition between species

...read more

Topics: Game theory (64%), Evolutionary dynamics (63%), Evolutionary game theory (62%) ...read more

4,277 Citations


Open accessBook
Joseph Felsenstein1Institutions (1)
01 Jan 1974-
Abstract: Come with us to read a new book that is coming recently. Yeah, this is a new coming book that many people really want to read will you be one of them? Of course, you should be. It will not make you feel so hard to enjoy your life. Even some people think that reading is a hard to do, you must be sure that you can do it. Hard will be felt when you have no ideas about what kind of book to read. Or sometimes, your reading material is not interesting enough.

...read more

Topics: Evolutionary physiology (69%), Evolutionary dynamics (68%), Molecular evolution (59%) ...read more

3,238 Citations


Book ChapterDOI: 10.1007/978-1-4684-9063-3_14
Richard C Lewontin1Institutions (1)
01 Jan 1972-
Abstract: It has always been obvious that organisms vary, even to those pre-Darwinian idealists who saw most individual variation as distorted shadows of an ideal. It has been equally apparent, even to those post-Darwinians for whom variation between individuals is the central fact of evolutionary dynamics, that variation is nodal, that individuals fall in clusters in the space of phenotypic description, and that those clusters, which we call demes, or races, or species, are the outcome of an evolutionary process acting on the individual variation. What has changed during the evolution of scientific thought, and is still changing, is our perception of the relative importance and extent of intragroup as opposed to intergroup variation. These changes have been in part a reflection of the uncovering of new biological facts, but only in part. They have also reflected general sociopolitical biases derived from human social experience and carried over into “scientific” realms. I have discussed elsewhere (Lewontin, 1968) long-term trends in evolutionary doctrine as a reflection of long-term changes in socioeconomic relations, but even in the present era of Darwinism there is considerable diversity of opinion about the amount or importance of intragroup variation as opposed to the variation between races and species. Muller, for example (1950), maintained that for sexually reproducing species, man in particular, there was very little genetic variation within populations and that most men were homozygous for wild-type genes at virtually all their loci.

...read more

2,022 Citations


Open accessBook
01 Jan 1979-
Abstract: Contents Preface Introduction 1 Historical Background 1.1 Biometricians, Saltationists and Mendelians 1.2 The Hardy-Weinberg Law 1.3 The Correlation Between Relatives 1.4 Evolution 1.4.1 The Deterministic Theory 1.4.2 Non-Random-Mating Populations 1.4.3 The Stochastic Theory 1.5 Evolved Genetic Phenomena 1.6 Modelling 1.7 Overall Evolutionary Theories 2 Technicalities and Generalizations 2.1 Introduction 2.2 Random Union of Gametes 2.3 Dioecious Populations 2.4 Multiple Alleles 2.5 Frequency-Dependent Selection 2.6 Fertility Selection 2.7 Continuous-Time Models 2.8 Non-Random-Mating Populations 2.9 The Fundamental Theorem of Natural Selection 2.10 Two Loci 2.11 Genetic Loads 2.12 Finite Markov Chains 3 Discrete Stochastic Models 3.1 Introduction 3.2 Wright-Fisher Model: Two Alleles 3.3 The Cannings (Exchangeable) Model: Two Alleles 3.4 Moran Models: Two Alleles 3.5 K-Allele Wright-Fisher Models 3.6 Infinitely Many Alleles Models 3.6.1 Introduction 3.6.2 The Wright-Fisher In.nitely Many Alleles Model 3.6.3 The Cannings In.nitely Many Alleles Model 3.6.4 The Moran In.nitely Many Alleles Model 3.7 The Effective Population Size 3.8 Frequency-Dependent Selection 3.9 Two Loci 4 Diffusion Theory 4.1 Introduction 4.2 The Forward and Backward Kolmogorov Equations 4.3 Fixation Probabilities 4.4 Absorption Time Properties 4.5 The Stationary Distribution 4.6 Conditional Processes 4.7 Diffusion Theory 4.8 Multi-dimensional Processes 4.9 Time Reversibility 4.10 Expectations of Functions of Di.usion Variables 5 Applications of Diffusion Theory 5.1 Introduction 5.2 No Selection or Mutation 5.3 Selection 5.4 Selection: Absorption Time Properties 5.5 One-Way Mutation 5.6 Two-Way Mutation 5.7 Diffusion Approximations andBoundary Conditions 5.8 Random Environments 5.9 Time-Reversal and Age Properties 5.10 Multi-Allele Diffusion Processes 6 Two Loci 6.1 Introduction 6.2 Evolutionary Properties of Mean Fitness 6.3 Equilibrium Points 6.4 Special Models 6.5 Modifier Theory 6.6 Two-Locus Diffusion Processes 6.7 Associative Overdominance and Hitchhiking 6.8 The Evolutionary Advantage of Recombination 6.9 Summary 7 Many Loci 7.1 Introduction 7.2 Notation 7.3 The Random Mating Case 7.3.1 Linkage Disequilibrium, Means and Variances 7.3.2 Recurrence Relations for Gametic Frequencies 7.3.3 Components of Variance 7.3.4 Particular Models 7.4 Non-Random Mating 7.4.1 Introduction 7.4.2 Notation and Theory 7.4.3 Marginal Fitnesses and Average Effects 7.4.4 Implications 7.4.5 The Fundamental Theorem of Natural Selection 7.4.6 Optimality Principles 7.5 The Correlation Between Relatives 7.6 Summary 8 Further Considerations 8.1 Introduction 8.2 What is Fitness? 8.3 Sex Ratio 8.4 Geographical Structure 8.5 Age Structure 8.6 Ecological Considerations 8.7 Sociobiology 9 Molecular Population Genetics: Introduction 9.1 Introduction 9.2 Technical Comments 9.3 In.nitely Many Alleles Models: Population Properties 9.3.1 The Wright-Fisher Model 9.3.2 The Moran Model 9.4 In.nitely Many Sites Models: Population Properties 9.4.1 Introduction 9.4.2 The Wright-Fisher Model 9.4.3 The Moran Model 9.5 Sample Properties of In.nitely Many Alleles Models 9.5.1 Introduction 9.5.2 The Wright-Fisher Model 9.5.3 The Moran Model 9.6 Sample Properties of In.nitely Many Sites Models 9.6.1 Introduction 9.6.2 The Wright-Fisher Model 9.6.3 The Moran Model 9.7 Relation Between In.nitely Many Alleles and Infinitely Many Sites Models 9.8 Genetic Variation Within and Between

...read more

Topics: Moran process (67%), Evolutionary dynamics (60%), Population genetics (56%) ...read more

1,848 Citations


Open accessJournal ArticleDOI: 10.1038/NATURE04605
25 May 2006-Nature
Abstract: The evolution and maintenance of cooperative behaviour take some explaining. Cooperative groups can be undermined by ‘cheaters’ who selfishly exploit common resources, and a large body of theory predicts that cheats will usually displace cooperators. But a possible explanation of why cheats don't always prosper emerges from competition experiments between strains of yeast that act as cooperators and cheaters, competing for glucose and utilizing it either efficiently or ‘selfishly’. The results show that both strategies can coexist, because both are associated with costs and benefits. There is a cost to cheating; in this instance the production of fewer offspring than the opposition. A graphic — really — demonstration that natural selection can favour cooperation comes in a study by Ohtsuki et al. of the evolutionary dynamics of structured ‘virtual’ populations formed of points on a graph. Cooperation is favoured if the benefit of the altruistic act divided by the cost exceeds the average number of neighbours. So cooperation can evolve as a consequence of this ‘social viscosity’ even in the absence of reputation effects or strategic complexity. Natural selection generally favours cooperation if the benefit of the altruistic act divided by the cost exceeds the average number of neighbours, indicating that cooperation can evolve as a consequence of ‘social viscosity’, even in the absence of reputation effects or strategic complexity. A fundamental aspect of all biological systems is cooperation. Cooperative interactions are required for many levels of biological organization ranging from single cells to groups of animals1,2,3,4. Human society is based to a large extent on mechanisms that promote cooperation5,6,7. It is well known that in unstructured populations, natural selection favours defectors over cooperators. There is much current interest, however, in studying evolutionary games in structured populations and on graphs8,9,10,11,12,13,14,15,16,17. These efforts recognize the fact that who-meets-whom is not random, but determined by spatial relationships or social networks18,19,20,21,22,23,24. Here we describe a surprisingly simple rule that is a good approximation for all graphs that we have analysed, including cycles, spatial lattices, random regular graphs, random graphs and scale-free networks25,26: natural selection favours cooperation, if the benefit of the altruistic act, b, divided by the cost, c, exceeds the average number of neighbours, k, which means b/c > k. In this case, cooperation can evolve as a consequence of ‘social viscosity’ even in the absence of reputation effects or strategic complexity.

...read more

1,747 Citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20225
2021205
2020207
2019192
2018218
2017183

Top Attributes

Show by:

Topic's top 5 most impactful authors

Martin A. Nowak

63 papers, 11.7K citations

Arne Traulsen

32 papers, 3.8K citations

Michael Doebeli

27 papers, 1.2K citations

Long Wang

17 papers, 262 citations

Marcus W. Feldman

17 papers, 1.1K citations

Network Information
Related Topics (5)
Fitness landscape

3.3K papers, 114.2K citations

88% related
Neutral theory of molecular evolution

1.2K papers, 108.7K citations

86% related
Evolutionary game theory

2.4K papers, 105.7K citations

86% related
Mutation rate

6.3K papers, 366.3K citations

84% related
Natural selection

9.2K papers, 659.9K citations

84% related