scispace - formally typeset
Search or ask a question
Topic

Ewald summation

About: Ewald summation is a research topic. Over the lifetime, 803 publications have been published within this topic receiving 78710 citations. The topic is also known as: Ewald method.


Papers
More filters
Journal ArticleDOI
TL;DR: An N⋅log(N) method for evaluating electrostatic energies and forces of large periodic systems is presented based on interpolation of the reciprocal space Ewald sums and evaluation of the resulting convolutions using fast Fourier transforms.
Abstract: An N⋅log(N) method for evaluating electrostatic energies and forces of large periodic systems is presented. The method is based on interpolation of the reciprocal space Ewald sums and evaluation of the resulting convolutions using fast Fourier transforms. Timings and accuracies are presented for three large crystalline ionic systems.

24,332 citations

Journal ArticleDOI
TL;DR: It is demonstrated that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N), which is comparable to that of a simple truncation method of 10 A or less.
Abstract: The previously developed particle mesh Ewald method is reformulated in terms of efficient B‐spline interpolation of the structure factors This reformulation allows a natural extension of the method to potentials of the form 1/rp with p≥1 Furthermore, efficient calculation of the virial tensor follows Use of B‐splines in place of Lagrange interpolation leads to analytic gradients as well as a significant improvement in the accuracy We demonstrate that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N) For biomolecular systems with many thousands of atoms this method permits the use of Ewald summation at a computational cost comparable to that of a simple truncation method of 10 A or less

17,897 citations

Journal ArticleDOI
TL;DR: An algorithm is presented for the rapid evaluation of the potential and force fields in systems involving large numbers of particles whose interactions are Coulombic or gravitational in nature, making it considerably more practical for large-scale problems encountered in plasma physics, fluid dynamics, molecular dynamics, and celestial mechanics.

5,003 citations

Journal ArticleDOI
TL;DR: The newly written code GADGET is described, which is suitable both for cosmological simulations of structure formation and for the simulation of interacting galaxies, and a parallel version that has been designed to run on massively parallel supercomputers with distributed memory.

1,588 citations

Journal ArticleDOI
TL;DR: In this paper, an analytical solution of the linearized Poisson-Boltzmann (PB) equation valid in a spherical region is obtained, which can be used for evaluating the electrostatic potential and its derivative at the origin of the sphere.
Abstract: Molecular dynamics simulations of ionic systems require the inclusion of long‐range electrostatic forces. We propose an expression for the long‐range electrostatic forces based on an analytical solution of the Poisson–Boltzmann equation outside a spherical cutoff, which can easily be implemented in molecular simulation programs. An analytical solution of the linearized Poisson–Boltzmann (PB) equation valid in a spherical region is obtained. From this general solution special expressions are derived for evaluating the electrostatic potential and its derivative at the origin of the sphere. These expressions have been implemented for molecular dynamics (MD) simulations, such that the surface of the cutoff sphere around a charged particle is identified with the spherical boundary of the Poisson–Boltzmann problem. The analytical solution of the Poisson–Boltzmann equation is valid for the cutoff sphere and can be used for calculating the reaction field forces on the central charge, assuming a uniform continuum of given ionic strength beyond the cutoff. MD simulations are performed for a periodic system consisting of 2127 SPC water molecules with 40 NaCl ions (1 molar). We compare the structural and dynamical results obtained from MD simulations in which the long range electrostatic interactions are treated differently; using a cutoff radius, using a cutoff radius and a Poisson–Boltzmann generalized reaction field force, and using the Ewald summation. Application of the Poisson–Boltzmann generalized reaction field gives a dramatic improvement of the structure of the solution compared to a simple cutoff treatment, at no extra computational cost.

1,311 citations


Network Information
Related Topics (5)
Ab initio
57.3K papers, 1.6M citations
81% related
Ground state
70K papers, 1.5M citations
78% related
Monolayer
47.3K papers, 1.5M citations
76% related
Excited state
102.2K papers, 2.2M citations
76% related
Density functional theory
66.1K papers, 2.1M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202215
202118
202018
201916
201829
201730