scispace - formally typeset
Search or ask a question

Showing papers on "Excited state published in 2017"


Journal ArticleDOI
19 Oct 2017-Nature
TL;DR: It is shown that an organic LPL system of two simple organic molecules that is free from rare elements and easy to fabricate can generate emission that lasts for more than one hour at room temperature, opening new applications for LPL in large-area and flexible paints, biomarkers, fabrics, and windows.
Abstract: Long persistent luminescence (LPL) materials-widely commercialized as 'glow-in-the-dark' paints-store excitation energy in excited states that slowly release this energy as light At present, most LPL materials are based on an inorganic system of strontium aluminium oxide (SrAl2O4) doped with europium and dysprosium, and exhibit emission for more than ten hours However, this system requires rare elements and temperatures higher than 1,000 degrees Celsius during fabrication, and light scattering by SrAl2O4 powders limits the transparency of LPL paints Here we show that an organic LPL (OLPL) system of two simple organic molecules that is free from rare elements and easy to fabricate can generate emission that lasts for more than one hour at room temperature Previous organic systems, which were based on two-photon ionization, required high excitation intensities and low temperatures By contrast, our OLPL system-which is based on emission from excited complexes (exciplexes) upon the recombination of long-lived charge-separated states-can be excited by a standard white LED light source and generate long emission even at temperatures above 100 degrees Celsius This OLPL system is transparent, soluble, and potentially flexible and colour-tunable, opening new applications for LPL in large-area and flexible paints, biomarkers, fabrics, and windows Moreover, the study of long-lived charge separation in this system should advance understanding of a wide variety of organic semiconductor devices

619 citations


Journal ArticleDOI
TL;DR: The emission process of the o-carborane dyad with anthracene originating from the twisted intramolecular charge transfer (TICT) state in the crystalline state is described and it is proposed that the compact sphere shape of o- carborane would allow for rotation even in the condensed state.
Abstract: The emission process of the o-carborane dyad with anthracene originating from the twisted intramolecular charge transfer (TICT) state in the crystalline state is described. The anthracene-o-carborane dyad was synthesized and its optical properties were investigated. Initially, the dyad had aggregation- and crystallization-induced emission enhancement (AIEE and CIEE) properties via the intramolecular charge transfer (ICT) state. Interestingly, the dyad presented the dual-emissions assigned to both locally excited (LE) and ICT states in solution. From the mechanistic studies and computer calculations, it was indicated that the emission band from the ICT should be attributable to the TICT emission. Surprisingly, even in the crystalline state, the TICT emission was observed. It was proposed from that the compact sphere shape of o-carborane would allow for rotation even in the condensed state.

284 citations


Journal ArticleDOI
29 Mar 2017-Nature
TL;DR: The absence of intersystem crossing enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces.
Abstract: Transition-metal complexes are used as photosensitizers, in light-emitting diodes, for biosensing and in photocatalysis. A key feature in these applications is excitation from the ground state to a charge-transfer state; the long charge-transfer-state lifetimes typical for complexes of ruthenium and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron and copper being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs, it remains a formidable scientific challenge to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(iii) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.

266 citations


Journal ArticleDOI
TL;DR: The anti-Kasha effects, which provide an important element that sheds light on the mechanisms of excited-state transformations, open new possibilities of selective control of these reactions for a variety of practical applications.
Abstract: This paper provides a systematic review and analysis of different phenomena that violate a basic principle, Kasha’s rule, when applied to photochemical reactions. In contrast to the classical route of ultrafast transition to the lowest energy excited state and photochemical reaction starting therein, in some cases, these reactions proceed directly from high-energy excited states. Nowadays, this phenomenon can be observed for a number of major types of excited-state reactions: harvesting product via intersystem crossing; photoisomerizations; bond-breaking; and electron, proton, and energy transfers. We show that specific conditions for their observation are determined by kinetic factors. They should be among the fastest reactions in studied systems, competing with vibrational relaxation and radiative or nonradiative processes occurring in upper excited states. The anti-Kasha effects, which provide an important element that sheds light on the mechanisms of excited-state transformations, open new possibiliti...

254 citations


Journal ArticleDOI
02 Feb 2017-Nature
TL;DR: It is demonstrated that spin–orbit-coupled fermions can be engineered to occur naturally in a one-dimensional optical lattice clock and to study Bloch oscillations, spin–momentum locking and Van Hove singularities in the transition density of states.
Abstract: Engineered spin-orbit coupling (SOC) in cold-atom systems can enable the study of new synthetic materials and complex condensed matter phenomena. However, spontaneous emission in alkali-atom spin-orbit-coupled systems is hindered by heating, limiting the observation of many-body effects and motivating research into potential alternatives. Here we demonstrate that spin-orbit-coupled fermions can be engineered to occur naturally in a one-dimensional optical lattice clock. In contrast to previous SOC experiments, here the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states in 87Sr atoms. We use clock spectroscopy to prepare lattice band populations, internal electronic states and quasi-momenta, and to produce spin-orbit-coupled dynamics. The exceptionally long lifetime of the excited clock state (160 seconds) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We use these capabilities to study Bloch oscillations, spin-momentum locking and Van Hove singularities in the transition density of states. Our results lay the groundwork for using fermionic optical lattice clocks to probe new phases of matter.

240 citations


Journal ArticleDOI
TL;DR: In this article, the authors developed a theory describing the generation rates and the energy distributions of hot electrons in nanocrystals with various geometries, and the formalism predicts that large optically excited nanoparticles show the excitation of mostly low-energy Drude electrons, whereas plasmons in small nanoparticles involve mostly hig...
Abstract: Generation of energetic (hot) electrons is an intrinsic property of any plasmonic nanostructure under illumination. Simultaneously, a striking advantage of metal nanocrystals over semiconductors lies in their very large absorption cross sections. Therefore, metal nanostructures with strong and tailored plasmonic resonances are very attractive for photocatalytic applications in which excited electrons play an important role. However, the central questions in the problem of plasmonic hot electrons are the number of optically excited energetic electrons in a nanocrystal and how to extract such electrons. Here we develop a theory describing the generation rates and the energy distributions of hot electrons in nanocrystals with various geometries. In our theory, hot electrons are generated due to surfaces and hot spots. As expected, the formalism predicts that large optically excited nanocrystals show the excitation of mostly low-energy Drude electrons, whereas plasmons in small nanocrystals involve mostly hig...

223 citations


Journal ArticleDOI
TL;DR: In this paper, a review of DFT calculations to optimize geometries for the visualization of frontier molecular orbital separation was surveyed to find that the B3LYP/6-31G(d) level of theory is the overwhelmingly used approach.
Abstract: The field of organic light-emitting devices (OLEDs) has undergone a remarkable journey since its discovery by Tang and VanSlyke with an alternation of utilizing fluorescence and phosphorescence as the emitting vehicle. The latest generation of thermally activated delayed fluorescence (TADF) materials harvest triplet excited states back into the singlet manifold. This booming field has yielded a large array of new compounds as both emitters and hosts. This review is limited to TADF emitters utilizing at least one carbazole unit as a donor and organized according to the various acceptor building blocks such as cyanophenyl, pyridine, biphenyls, anthraquinone, phenyl(pyridine-2-yl)methanone, benzophenone, xanthon, sulfones, triazines, benzils, dicyanopyrazines, diazatriphenylene, and others. A survey of carbazole-containing host materials follows. Density functional theory (DFT) has carved out a significant role in allowing the theoretical prediction of ground state properties for materials applied in OLED technology. Time-dependent DFT extends the reach to model excited state properties important to rationalize the light-output in OLED technology. For TADF, two fundamental factors are of interest: significant separation of frontier molecular orbitals and minimal singlet–triplet energy gap (ΔEST). In this review, the utilization of DFT calculations to optimize geometries for the visualization of frontier molecular orbital separation was surveyed to find that the B3LYP/6-31G(d) level of theory is the overwhelmingly used approach. In addition, we review the more in-depth approaches to utilizing DFT and time-dependent DFT (TD-DFT) with optimized percentage Hartree–Fock (OHF) and long-range corrected hybrid functionals, tuning procedures and others in an attempt to best quantify the size of ΔEST as well as the nature of the triplet state as locally excited state (LE) and charge-transfer state (CT).

220 citations


Journal ArticleDOI
TL;DR: It is reported that boric acid is used to tune the optical properties of lanthanide metal-organic frameworks (LMOFs) for dual-fluorescence emission and improves the selectivity of L MOFs for the determination of F- ions and rational selection of functional ligands can improve the sensing efficiency of LMOFs through tuning their optical property and enhancing the selectivities toward targets.
Abstract: Here, we report that boric acid is used to tune the optical properties of lanthanide metal–organic frameworks (LMOFs) for dual-fluorescence emission and improves the selectivity of LMOFs for the determination of F– ions. The LMOFs are prepared with 5-boronoisophthalic acid (5-bop) and Eu3+ ions as the precursors. Emission mechanism study indicates that 5-bop is excited with UV photons to produce its triplet state, which then excites Eu3+ ions for their red emission. This is the general story of the antenna effect, but electron-deficient boric acid decreases the energy transfer efficiency from the triplet state of 5-bop to Eu3+ ions, so dual emission from both 5-bop and Eu3+ ions is efficiently excited at the single excitation of 275 nm. Moreover, boric acid is used to identify fluoride specifically as a free accessible site. The ratiometric fluorescent detection of F– ions is validated with the dual emission at single excitation. The LMOFs are very monodisperse, so the determination of aqueous F– ions is ...

210 citations


Journal ArticleDOI
Roel Aaij1, Bernardo Adeva2, Marco Adinolfi3, Ziad Ajaltouni4  +785 moreInstitutions (54)
TL;DR: The Ξ_{c}^{+}K^{-} mass spectrum is studied with a sample of pp collision data corresponding to an integrated luminosity of 3.3 fb^{-1], collected by the LHCb experiment.
Abstract: The Ξ_{c}^{+}K^{-} mass spectrum is studied with a sample of pp collision data corresponding to an integrated luminosity of 3.3 fb^{-1}, collected by the LHCb experiment. The Ξ_{c}^{+} is reconstructed in the decay mode pK^{-}π^{+}. Five new, narrow excited Ω_{c}^{0} states are observed: the Ω_{c}(3000)^{0}, Ω_{c}(3050)^{0}, Ω_{c}(3066)^{0}, Ω_{c}(3090)^{0}, and Ω_{c}(3119)^{0}. Measurements of their masses and widths are reported.

203 citations


Journal ArticleDOI
TL;DR: In this article, the authors performed density functional theory (DFT) and constrained DFT calculations for a range of hBN point defects in order to identify potential emission candidates by applying a number of criteria on the electronic structure of the ground state and the atomic structure of excited states of the considered defects, and then calculating the Huang-Rhys factor.
Abstract: Hexagonal boron nitride (hBN) has recently emerged as a fascinating platform for room-temperature quantum photonics due to the discovery of robust visible light single-photon emitters In order to utilize these emitters, it is necessary to have a clear understanding of their atomic structure and the associated excitation processes that give rise to this single photon emission Here, we performed density-functional theory (DFT) and constrained DFT calculations for a range of hBN point defects in order to identify potential emission candidates By applying a number of criteria on the electronic structure of the ground state and the atomic structure of the excited states of the considered defects, and then calculating the Huang–Rhys (HR) factor, we found that the CBVN defect, in which a carbon atom substitutes a boron atom and the opposite nitrogen atom is removed, is a potential emission source with a HR factor of 166, in good agreement with the experimental HR factor We calculated the photoluminescence (PL) line shape for this defect and found that it reproduces a number of key features in the experimental PL lineshape

194 citations


Journal ArticleDOI
TL;DR: Greater understanding of these photoredox catalysts with respect to CT and ion pairing enables their application toward the polymerization of methyl methacrylate for the synthesis of polymers with precisely tunable molecular weights and dispersities typically lower than 1.10.
Abstract: Photoexcited intramolecular charge transfer (CT) states in N,N-diaryl dihydrophenazine photoredox catalysts are accessed through catalyst design and investigated through combined experimental studies and density functional theory (DFT) calculations. These CT states are reminiscent of the metal to ligand charge transfer (MLCT) states of ruthenium and iridium polypyridyl complexes. For cases where the polar CT state is the lowest energy excited state, we observe its population through significant solvatochromic shifts in emission wavelength across the visible spectrum by varying solvent polarity. We propose the importance of accessing CT states for photoredox catalysis of atom transfer radical polymerization lies in their ability to minimize fluorescence while enhancing electron transfer rates between the photoexcited photoredox catalyst and the substrate. Additionally, solvent polarity influences the deactivation pathway, greatly affecting the strength of ion pairing between the oxidized photocatalyst and ...

Journal ArticleDOI
TL;DR: Careful analysis of the crystal structures shows that the formation and fracture of molecular dimers with intermolecular charge-transfer properties has a significant effect on intersystem crossing, as well as excited triplet state emissions, in both PL and ML processes.
Abstract: Two stable, purely organic luminogens exhibit both mechano- (ML) and photoluminescence (PL) with dual fluorescence–phosphorescence emissions at room temperature. Careful analysis of the crystal structures, coupled with theoretical calculations, demonstrate that room-temperature phosphorescence and ML properties are strongly related to molecular packing. In particular, the formation and fracture of molecular dimers with intermolecular charge-transfer properties has a significant effect on intersystem crossing, as well as excited triplet state emissions, in both PL and ML processes.

Journal ArticleDOI
17 Nov 2017-Science
TL;DR: In this paper, the authors determined photoionization time delays in neon atoms over a 40-electron volt energy range with an interferometric technique combining high temporal and spectral resolution.
Abstract: Ultrafast processes in matter, such as the electron emission after light absorption, can now be studied using ultrashort light pulses of attosecond duration (10 −18 seconds) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses has raised issues in the interpretation of the experimental results and the comparison with theoretical calculations. We determine photoionization time delays in neon atoms over a 40–electron volt energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake-up, in which a second electron is left in an excited state, and obtain excellent agreement with theoretical calculations, thereby solving a puzzle raised by 7-year-old measurements.

Journal ArticleDOI
TL;DR: Ultrafast spectroscopic measurements and quantum chemical calculations have now uncovered aspects of the process critical to it occurring efficiently, including the role of intermolecular vibrations and symmetry breaking, and the location of a conical intersection on the excited-state potential-energy surface.
Abstract: Singlet fission, in which a singlet exciton is converted to two triplet excitons, is a process that could be beneficial in photovoltaic applications. A full understanding of the dynamics of singlet fission in molecular systems requires detailed knowledge of the relevant potential energy surfaces and their (conical) intersections. However, obtaining such information is a nontrivial task, particularly for molecular aggregates. Here we investigate singlet fission in rubrene crystals using transient absorption spectroscopy and state-of-the-art quantum chemical calculations. We observe a coherent and ultrafast singlet-fission channel as well as the well-known and conventional thermally assisted incoherent channel. This coherent channel is accessible because the conical intersection for singlet fission on the excited-state potential energy surface is located very close to the equilibrium position of the ground-state potential energy surface and also because of the excitation of an intermolecular symmetry-breaking mode, which activates the electronic coupling necessary for singlet fission.

Journal ArticleDOI
TL;DR: Theoretical analysis suggests that, in addition to an incoherent S1→1(TT) rate process responsible for the 180 fs timescale, S1 may couple coherently to a vibronically excited 1( TT) on ultrafast timescales (<50”fs).
Abstract: The absorption of a photon usually creates a singlet exciton (S1) in molecular systems, but in some cases S1 may split into two triplets (2×T1) in a process called singlet fission. Singlet fission is believed to proceed through the correlated triplet-pair 1(TT) state. Here, we probe the 1(TT) state in crystalline hexacene using time-resolved photoemission and transient absorption spectroscopies. We find a distinctive 1(TT) state, which decays to 2×T1 with a time constant of 270 fs. However, the decay of S1 and the formation of 1(TT) occur on different timescales of 180 fs and <50 fs, respectively. Theoretical analysis suggests that, in addition to an incoherent S1→1(TT) rate process responsible for the 180 fs timescale, S1 may couple coherently to a vibronically excited 1(TT) on ultrafast timescales (<50 fs). The coexistence of coherent and incoherent singlet fission may also reconcile different experimental observations in other acenes.

Journal ArticleDOI
TL;DR: The general strategies and representative synthetic methods for the preparation and functionalization of azulene and its derivatives are presented, and then the application of azULene-based optoelectronic materials in organic field-effect transistors and solar cells is discussed.
Abstract: Azulene, as an isomer of naphthalene, has received increasing interest due to its unique chemical structure and unusual photophysical properties, including a large dipole moment of 1.08 D, a narrow energy gap between the HOMO and LUMO, and abnormal fluorescence (anti-Kasha's rule) from the second excited state to the ground state. In this Minireview, the general strategies and representative synthetic methods for the preparation and functionalization of azulene and its derivatives are presented, and then the application of azulene-based optoelectronic materials in organic field-effect transistors and solar cells is discussed. Finally, the challenges and outlook on developing azulene-based optoelectronic materials are discussed, together with several key points on molecular design and synthesis.

Journal ArticleDOI
TL;DR: In this paper, a cerium-substituted barium lutetium borate, Ba2Lu5B5O17:Ce3+, is achieved using high temperature solid state synthesis.
Abstract: The preparation of cerium-substituted barium lutetium borate, Ba2Lu5B5O17:Ce3+, is achieved using high temperature solid state synthesis. This compound crystallizes in the Ba2Y5B5O17-type structure and shows an efficient blue emission (λmax = 447 nm) when excited by UV-light (λex = 340 nm) with a photoluminescent quantum yield near 90%, a fast luminescence decay time (<40 ns), and a thermal quenching temperature of 452 K. Further, preparing a solid solution following Ba2(Y1–xLux)5B5O17:Ce3+ (x = 0, 0.25, 0.50, 0.75, 1) confirms that all compounds are isostructural and follow Vegard’s law. Substituting Y3+ for Lu3+ yields a nearly constant emission spectrum that blue-shifts by only 9 nm and has a consistent luminescence lifetime across the range prepared. The photoluminescent quantum yield (PLQY) and thermal quenching (T50) of the solid solution, however, are dramatically impacted by the composition, with the PLQY decreasing to ≈70% and the T50 dropping 49 K going from x = 1 to x = 0. These significant cha...

Journal ArticleDOI
TL;DR: It is shown that scattering between B- Excitons and A-excitons preferably happens within the same valley in momentum space, which leads to power dependent, negative polarization of the hot B-exciton emission.
Abstract: Excitons, Coulomb bound electron–hole pairs, are composite bosons and their interactions in traditional semiconductors lead to condensation and light amplification. The much stronger Coulomb interaction in transition metal dichalcogenides such as WSe2 monolayers combined with the presence of the valley degree of freedom is expected to provide new opportunities for controlling excitonic effects. But so far the bosonic character of exciton scattering processes remains largely unexplored in these two-dimensional materials. Here we show that scattering between B-excitons and A-excitons preferably happens within the same valley in momentum space. This leads to power dependent, negative polarization of the hot B-exciton emission. We use a selective upconversion technique for efficient generation of B-excitons in the presence of resonantly excited A-excitons at lower energy; we also observe the excited A-excitons state 2s. Detuning of the continuous wave, low-power laser excitation outside the A-exciton resonance (with a full width at half maximum of 4 meV) results in vanishing upconversion signal. Monolayer transition metal dichalcogenides host excitons, bound electron-hole pairs that play a pivotal role in optoelectronic applications relying on strong light-matter interaction. Here, the authors unveil the spectroscopic signature of boson scattering of two-dimensional excitons in monolayer WSe2.

Journal ArticleDOI
TL;DR: Two low‐molecular weight, long‐lived and photo‐stable iridium complexes of the [Ir(N^C)2 (N^N)]+ family with high TP‐absorption are introduced, which localise to mitochondria and lysosomal structures in live cells and indicate potential future clinical application.
Abstract: Photodynamic therapy (PDT) uses photosensitizers (PS) which only become cytotoxic upon light-irradiation. Transition-metal complexes are highly promising PS due to long excited-state lifetimes, and high photo-stabilities. However, these complexes usually absorb higher-energy UV/Vis light, whereas the optimal tissue transparency is in the lower-energy NIR region. Two-photon excitation (TPE) can overcome this dichotomy, with simultaneous absorption of two lower-energy NIR-photons populating the same PS-active excited state as one higher-energy photon. We introduce two low-molecular weight, long-lived and photo-stable iridium complexes of the [Ir(N^C)2(N^N)]+ family with high TP-absorption, which localise to mitochondria and lysosomal structures in live cells. The compounds are efficient PS under 1-photon irradiation (405 nm) resulting in apoptotic cell death in diverse cancer cell lines at low light doses (3.6 J cm−2), low concentrations, and photo-indexes greater than 555. Remarkably 1 also displays high PS activity killing cancer cells under NIR two-photon excitation (760 nm), which along with its photo-stability indicates potential future clinical application.

Journal ArticleDOI
TL;DR: Theoretical understanding of organic light-emitting diodes started from the quest to the nature of the primary excitation in organic molecular and polymeric materials through the first application of density matrix renormalization group theory to quantum chemistry as discussed by the authors.
Abstract: Theoretical understanding of organic light-emitting diodes started from the quest to the nature of the primary excitation in organic molecular and polymeric materials. We found the electron correlation strength, bond-length alternation as well as the conjugation extent have strong influences on the orderings of the lowest lying excited states through the first application of density matrix renormalization group theory to quantum chemistry. The electro-injected free carriers (with spin 1/2) can form both singlet and triplet bound states. We found that the singlet exciton formation ratio can exceed the conventional 25% spin statistics limit. We proposed a vibration correlation function formalism to evaluate the excited-state decay rates, which is shown to not only give reasonable estimations for the quantum efficiency but also a quantitative account for the aggregation-induced emission (AIE). It is suggested to unravel the AIE mechanism through resonance Raman spectroscopy.

Journal ArticleDOI
TL;DR: The photoluminescence properties of a series of phenyl-ring molecular rotors bearing three, five, six, and seven phenyl groups are reported on, demonstrating that relaxed dimer states can form as a result of intra- or intermolecular interactions across a range of environments in solution and solid samples.
Abstract: Small, apolar aromatic groups, such as phenyl rings, are commonly included in the structures of fluorophores to impart hindered intramolecular rotations, leading to desirable solid-state luminescence properties. However, they are not normally considered to take part in through-space interactions that influence the fluorescent output. Here, we report on the photoluminescence properties of a series of phenyl-ring molecular rotors bearing three, five, six, and seven phenyl groups. The fluorescent emissions from two of the rotors are found to originate, not from the localized excited state as one might expect, but from unanticipated through-space aromatic-dimer states. We demonstrate that these relaxed dimer states can form as a result of intra- or intermolecular interactions across a range of environments in solution and solid samples, including conditions that promote aggregation-induced emission. Computational modeling also suggests that the formation of aromatic-dimer excited states may account for the ph...

Journal ArticleDOI
TL;DR: An extrapolation technique is introduced to reliably extrapolate HCI energies to the full CI limit, and the resulting algorithm is used to compute fourteen low-lying potential energy surfaces of the carbon dimer using the cc-pV5Z basis set.
Abstract: We extend our recently developed heat-bath configuration interaction (HCI) algorithm, and our semistochastic algorithm for performing multireference perturbation theory, to calculate excited-state wavefunctions and energies. We employ time-reversal symmetry, which reduces the memory requirements by more than a factor of two. An extrapolation technique is introduced to reliably extrapolate HCI energies to the full CI limit. The resulting algorithm is used to compute fourteen low-lying potential energy surfaces of the carbon dimer using the cc-pV5Z basis set, with an estimated error in energy of 30-50 μHa compared to full CI. The excitation energies obtained using our algorithm have a mean absolute deviation of 0.02 eV compared to experimental values.

Journal ArticleDOI
TL;DR: Pump-probe measurements of plasmonic nanoparticles are presented along with a complete theoretical description based on first-principles calculations of carrier dynamics and optical response, free of any fitting parameters, to identify the two major contributions of the initial response with distinct signatures.
Abstract: Ultrafast pump-probe measurements of plasmonic nanostructures probe the nonequilibrium behavior of excited carriers, which involves several competing effects obscured in typical empirical analyses. Here we present pump-probe measurements of plasmonic nanoparticles along with a complete theoretical description based on first-principles calculations of carrier dynamics and optical response, free of any fitting parameters. We account for detailed electronic-structure effects in the density of states, excited carrier distributions, electron-phonon coupling, and dielectric functions that allow us to avoid effective electron temperature approximations. Using this calculation method, we obtain excellent quantitative agreement with spectral and temporal features in transient-absorption measurements. In both our experiments and calculations, we identify the two major contributions of the initial response with distinct signatures: short-lived highly nonthermal excited carriers and longer-lived thermalizing carriers.

Journal ArticleDOI
TL;DR: In this article, the anisotropy of He-H2 interactions has been investigated by measuring how the associated quantum scattering resonances respond to tuning of the H2 rotational state.
Abstract: Atom–molecule interactions are orientation-dependent. Now the anisotropy of He–H2 interactions has been probed by measuring how the associated quantum scattering resonances respond to tuning of the H2 rotational state. Anisotropy is a fundamental property of particle interactions. It occupies a central role in cold and ultracold molecular processes, where orientation-dependent long-range forces have been studied in ultracold polar molecule collisions1,2. In the cold collisions regime, quantization of the intermolecular degrees of freedom leads to quantum scattering resonances. Although these states have been shown to be sensitive to details of the interaction potential3,4,5,6,7,8, the effect of anisotropy on quantum resonances has so far eluded experimental observation. Here, we directly measure the anisotropy in atom–molecule interactions via quantum resonances by changing the quantum state of the internal molecular rotor. We observe that a quantum scattering resonance at a collision energy of kB × 270 mK appears in the Penning ionization of molecular hydrogen with metastable helium only if the molecule is rotationally excited. We use state-of-the-art ab initio theory to show that control over the rotational state effectively switches the anisotropy on or off, disentangling the isotropic and anisotropic parts of the interaction.

Journal ArticleDOI
TL;DR: In this article, the authors calculated the interconversion and decay rates of the lowest excited singlet and triplet states at different temperatures as well as the prompt and delayed fluorescence efficiencies at 300 K at the first-principles level.
Abstract: Quantitative understanding of the photophysical processes is essential for developing novel thermally activated delayed fluorescence (TADF) materials Taking as an example 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene, a typical TADF-active molecule, we calculated the interconversion and decay rates of the lowest excited singlet and triplet states at different temperatures as well as the prompt and delayed fluorescence efficiencies at 300 K at the first-principles level Our results can reproduce well the experimentally available data It is found that the reverse intersystem crossing rate (kRISC) is sharply increased by 3 orders of magnitude, while the other rates increase slightly or remain unchanged when the temperature rises from 77 to 300 K Importantly, kRISC reaches up to 123 × 106 s–1 and can compete with the radiative and nonradiative decay rates of S1 (111 × 107 and 237 × 105 s–1) at 300 K, leading to an occurrence of delayed fluorescence In addition, our calculations indicate that it i

Journal ArticleDOI
TL;DR: In this article, the concentration/temperature-dependent spectroscopic properties of Pr3+ excited multiplets and of the Pr3−Ti4+ intervalence charge transfer (IVCT) state in (La 1−xPrx)2MgTiO6 were investigated.
Abstract: In this work, we demonstrate a potential thermometric material after systematic studies on the concentration/temperature-dependent spectroscopic properties of Pr3+ excited multiplets and of the Pr3+–Ti4+ intervalence charge transfer (IVCT) state in (La1−xPrx)2MgTiO6. The experimental results indicate that the electron population efficiency between the involved Pr3+ 4f multiplets is directly governed by multi-phonon relaxation (MPR) and cross relaxation (CR), and the IVCT state provides an additional contribution to the 1D2 luminescence. A schematic energy level diagram is proposed to illustrate the electron population pathway in Pr3+ doped La2MgTiO6. The observations clarify that the dramatic thermal-quenching of 3P0 luminescence is mainly induced by the electronic configuration crossover between the 3P0 multiplet and the IVCT state. On the other hand, the 1D2 luminescence possesses an excellent thermal stability in a large temperature region. These temperature sensing features of the Pr3+ doped La2MgTiO6 material indicate its potential application in optical thermometric techniques.

Journal ArticleDOI
TL;DR: In this article, a spectral line survey carried out with ALMA was used to detect CH3NHCHO towards the hot molecular core Sgr B2(N2) using the Rho-axis method and the RAM36 code.
Abstract: N-methylformamide, CH3NHCHO, may be an important molecule for interstellar pre-biotic chemistry because it contains a peptide bond. The rotational spectrum of the most stable trans conformer of CH3NHCHO is complicated by strong torsion-rotation interaction due to the low barrier of the methyl torsion. We use two absorption spectrometers in Kharkiv and Lille to measure the rotational spectra over 45--630 GHz. The analysis is carried out using the Rho-axis method and the RAM36 code. We search for N-methylformamide toward the hot molecular core Sgr B2(N2) using a spectral line survey carried out with ALMA. The astronomical results are put into a broader astrochemical context with the help of a gas-grain chemical kinetics model. The laboratory data set for the trans conformer of CH3NHCHO consists of 9469 line frequencies with J <= 62, including the first assignment of the rotational spectra of the first and second excited torsional states. All these lines are fitted within experimental accuracy. We report the tentative detection of CH3NHCHO towards Sgr B2(N2). We find CH3NHCHO to be more than one order of magnitude less abundant than NH2CHO, a factor of two less abundant than CH3NCO, but only slightly less abundant than CH3CONH2. The chemical models indicate that the efficient formation of HNCO via NH + CO on grains is a necessary step in the achievement of the observed gas-phase abundance of CH3NCO. Production of CH3NHCHO may plausibly occur on grains either through the direct addition of functional-group radicals or through the hydrogenation of CH3NCO. Provided the detection of CH3NHCHO is confirmed, the only slight underabundance of this molecule compared to its more stable structural isomer acetamide and the sensitivity of the model abundances to the chemical kinetics parameters suggest that the formation of these two molecules is controlled by kinetics rather than thermal equilibrium.

Posted Content
TL;DR: DFT and constrained DFT calculations for a range of hBN point defects are performed and it is found that the CBVN defect, in which a carbon atom substitutes a boron atom and the opposite nitrogen atom is removed, is a potential emission source with a HR factor in good agreement with the experimental HR factor.
Abstract: Hexagonal boron nitride (hBN) has recently emerged as a fascinating platform for room-temperature quantum photonics due to the discovery of robust visible light single-photon emitters. In order to utilize these emitters, it is necessary to have a clear understanding of their atomic structure and the associated excitation processes that give rise to this single photon emission. Here we perform density-functional theory (DFT) and constrained DFT calculations for a range of hBN point defects in order to identify potential emission candidates. By applying a number of criteria on the electronic structure of the ground state and the atomic structure of the excited states of the considered defects, and then calculating the Huang-Rhys (HR) factor, we find that the CBVN defect, in which a carbon atom substitutes a boron atom and the opposite nitrogen atom is removed, is a potential emission source with a HR factor of 1.66, in good agreement with the experimental HR factor. We calculate the photoluminescence (PL) line shape for this defect and find that it reproduces a number of key features in the the experimental PL lineshape.

Journal ArticleDOI
13 Apr 2017-Nature
TL;DR: This finding demonstrates that carefully tuned electronic excitations can create non-equilibrium potential energy surfaces that drive structural dynamics at interfaces in the quantum limit (that is, in a regime in which the nuclear motion is directed and deterministic).
Abstract: Transient control over the atomic potential-energy landscapes of solids could lead to new states of matter and to quantum control of nuclear motion on the timescale of lattice vibrations. Recently developed ultrafast time-resolved diffraction techniques combine ultrafast temporal manipulation with atomic-scale spatial resolution and femtosecond temporal resolution. These advances have enabled investigations of photo-induced structural changes in bulk solids that often occur on timescales as short as a few hundred femtoseconds. In contrast, experiments at surfaces and on single atomic layers such as graphene report timescales of structural changes that are orders of magnitude longer. This raises the question of whether the structural response of low-dimensional materials to femtosecond laser excitation is, in general, limited. Here we show that a photo-induced transition from the low- to high-symmetry state of a charge density wave in atomic indium (In) wires supported by a silicon (Si) surface takes place within 350 femtoseconds. The optical excitation breaks and creates In-In bonds, leading to the non-thermal excitation of soft phonon modes, and drives the structural transition in the limit of critically damped nuclear motion through coupling of these soft phonon modes to a manifold of surface and interface phonons that arise from the symmetry breaking at the silicon surface. This finding demonstrates that carefully tuned electronic excitations can create non-equilibrium potential energy surfaces that drive structural dynamics at interfaces in the quantum limit (that is, in a regime in which the nuclear motion is directed and deterministic). This technique could potentially be used to tune the dynamic response of a solid to optical excitation, and has widespread potential application, for example in ultrafast detectors.

Journal ArticleDOI
TL;DR: In this article, the authors provided an overview and interpretation of the spectroscopic data of the Bi3+ activator ion in 117 different inorganic compounds. And they used these energies, in combination with the electron binding energies in the host conduction and valence band, to determine the binding energies of the 6s ground state and 6p excited state relative to the vacuum level.