scispace - formally typeset
Search or ask a question

Showing papers on "Excited state published in 2021"


Journal ArticleDOI
TL;DR: In this paper, multiple boron (B)-and nitrogen (N)-atoms embedded polycyclic heteroaromatics featuring hybridized π-bonding/non-bond molecular orbitals are constructed, providing a way to overcome the above luminescent boundary.
Abstract: Efficient organic emitters in the deep-red region are rare due to the "energy gap law". Herein, multiple boron (B)- and nitrogen (N)-atoms embedded polycyclic heteroaromatics featuring hybridized π-bonding/ non-bonding molecular orbitals are constructed, providing a way to overcome the above luminescent boundary. The introduction of B-phenyl-B and N-phenyl-N structures enhances the electronic coupling of those para-positioned atoms, forming restricted π-bonds on the phenyl-core for delocalized excited states and thus a narrow energy gap. The mutually ortho-positioned B- and N-atoms also induce a multi-resonance effect on the peripheral skeleton for the non-bonding orbitals, creating shallow potential energy surfaces to eliminate the high-frequency vibrational quenching. The corresponding deep-red emitters with peaks at 662 and 692 nm exhibit narrow full-width at half-maximums of 38 nm, high radiative decay rates of ca. 108 s-1 , ≈100 % photo-luminescence quantum yields and record-high maximum external quantum efficiencies of ca. 28 % in a normal planar organic light-emitting diode structure, simultaneously.

179 citations


Journal ArticleDOI
03 May 2021
TL;DR: In this article, the authors give an overview of the Rydberg quantum toolbox, emphasizing the high degree of flexibility for encoding qubits, performing quantum operations, and engineering quantum many-body Hamiltonians.
Abstract: Arrays of optically trapped atoms excited to Rydberg states have recently emerged as a competitive physical platform for quantum simulation and computing, where high-fidelity state preparation and readout, quantum logic gates, and controlled quantum dynamics of more than 100 qubits have all been demonstrated. These systems are now approaching the point where reliable quantum computations with hundreds of qubits and realistically thousands of multiqubit gates with low error rates should be within reach for the first time. In this article, the authors give an overview of the Rydberg quantum toolbox, emphasizing the high degree of flexibility for encoding qubits, performing quantum operations, and engineering quantum many-body Hamiltonians. The authors then review the state-of-the-art concerning high-fidelity quantum operations and logic gates as well as quantum simulations in many-body regimes. Finally, the authors discuss computing schemes that are particularly suited to the Rydberg platform and some of the remaining challenges on the road to general purpose quantum simulators and quantum computers.

168 citations


Journal ArticleDOI
TL;DR: In this article, the authors proposed a mechanism of intermolecular electrostatic-interaction-induced RTP at the molecular level by using molecular dynamics simulations, hybrid quantum mechanics, and molecular mechanics coupled with the thermal vibration correlation function (TVCF) formalism.
Abstract: ConspectusRoom-temperature phosphorescence (RTP) with a long afterglow from purely organic molecular aggregates has recently attracted many investigations because traditionally only inorganic and transition-metal complexes can emit phosphorescence at room temperature. Purely organic molecules can exhibit phosphorescence only at cryogenic temperatures and under inert conditions in solution. However, recently, a number of organic compounds have been found to demonstrate bright RTP upon aggregation, sometimes with a remarkable morphology dependence. We intended to rationalize such aggregation-induced organic RTP through theoretical investigation and quantum chemistry calculations by invoking intermolecular interaction effects. And we have identified the molecular descriptors for the molecular design of RTP materials.In this Account, we started with the proposition of the mechanism of intermolecular electrostatic-interaction-induced RTP at the molecular level by using molecular dynamics simulations, hybrid quantum mechanics, and molecular mechanics (QM/MM) coupled with the thermal vibration correlation function (TVCF) formalism we developed earlier. The effective intermolecular electrostatic interactions could stem from a variety of interactions in different organic RTP crystals, such as hydrogen bonding, π-halogen bonding, anion-π+ interaction, and d-pπ bonds and so forth. We find that these interactions can change the molecular orbital compositions involved in the lowest-lying singlet and triplet excited states that are responsible for phosphorescence, either through facilitating intersystem crossing from the excited-state singlet to the triplet and/or suppressing the nonradiative decay process from the lowest triplet to the ground state. This underlying RTP mechanism is believed to be very helpful in systematically and comprehensively understanding the aggregation/crystal-induced persistent organic RTP, which has been applied to explain a number of experiments.We then propose the molecular descriptors to characterize the phosphorescence efficiency and lifetime, respectively, derived from fundamental photophysical processes and requirements to obey the El-Sayed rule and generate phosphorescence. For a prototypical RTP system consisting of a carbonyl group and π-conjugated segments, the excited states can be regarded as an admixture of n → π* (with portion α) and π → π* (with portion β). The intersystem crossing (ISC) rate of S1 → Tn is mostly governed by the modification of the product of α and β, and the nonradiative rate of T1 → S0 is determined by the β value of T1. Thus, we employ γ = α × β and β to describe the phosphorescence efficiency and lifetime, respectively, which have been successfully applied in the molecular design of efficient and long-lived RTP systems in experiments. The molecular descriptors outlined in this Account, which are easily obtained from simple quantum chemistry calculations, are expected to play important roles in the machine-learning-based molecular screening in the future.

114 citations


Journal ArticleDOI
TL;DR: Light is shed on the importance of conformation control for achieving high-efficiency intramolecular exciplex emitters with precisely controlled alignment of the donor and acceptor segments in TSCT emitters.
Abstract: Intramolecular through-space charge-transfer (TSCT) excited states have been exploited for developing thermally activated delayed fluorescence (TADF) emitters, but the tuning of excited state dynamics by conformational engineering remains sparse. Designed here is a series of TSCT emitters with precisely controlled alignment of the donor and acceptor segments. With increasing intramolecular π-π interactions, the radiative decay rate of the lowest singlet excited state (S1 ) progressively increased together with a suppression of nonradiative decay, leading to significantly enhanced photoluminescence quantum yields of up to 0.99 in doped thin films. A high-efficiency electroluminescence device, with a maximum external quantum efficiency (EQE) of 23.96 %, was achieved and maintains >20 % at a brightness of 1000 cd m-2 . This work sheds light on the importance of conformation control for achieving high-efficiency intramolecular exciplex emitters.

86 citations


Journal ArticleDOI
TL;DR: In this article, a boron difluoride β-acetylnaphthalene chelate (βCBF2 ) was used to control the excited state dynamics via its J-and H-aggregation states.
Abstract: Control of excited-state dynamics is key in tuning room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) emissions but is challenging for organic luminescent materials (OLMs). We show the regulation of TADF and RTP emissions of a boron difluoride β-acetylnaphthalene chelate (βCBF2 ) by controlling the excited-state dynamics via its J- and H-aggregation states. Two crystalline polymorphs emitting green and red light have been controllably obtained. Although both monoclinic, the green and red crystals are dominated by J- and H-aggregation, respectively, owing to different molecular packing arrangements. J-aggregation significantly reduces the energy gap between the lowest singlet and triplet excited states for ultra-fast reverse intersystem crossing (RISC) and enhances the radiative singlet decay, together leading to TADF. The H-aggregation accelerates the ISC and suppresses the radiative singlet decay, helping to stabilize the triplet exciton for RTP.

63 citations


Journal ArticleDOI
TL;DR: In this paper, a transmon qubit coupled to propagating microwaves at multiple points along an open transmission line was investigated, where the qubit radiation field can interfere with itself, leading to some striking giant-atom effects.
Abstract: Engineering light-matter interactions at the quantum level has been central to the pursuit of quantum optics for decades. Traditionally, this has been done by coupling emitters, typically natural atoms and ions, to quantized electromagnetic fields in optical and microwave cavities. In these systems, the emitter is approximated as an idealized dipole, as its physical size is orders of magnitude smaller than the wavelength of light. Recently, artificial atoms made from superconducting circuits have enabled new frontiers in light-matter coupling, including the study of ``giant'' atoms which cannot be approximated as simple dipoles. Here, we explore an implementation of a giant artificial atom, formed from a transmon qubit coupled to propagating microwaves at multiple points along an open transmission line. The nature of this coupling allows the qubit radiation field to interfere with itself, leading to some striking giant-atom effects. For instance, we observe strong frequency-dependent couplings of the qubit energy levels to the electromagnetic modes of the transmission line. Combined with the ability to in situ tune the qubit energy levels, we show that we can modify the relative coupling rates of multiple qubit transitions by more than an order of magnitude. By doing so, we engineer a metastable excited state, allowing us to operate the giant transmon as an effective lambda system where we clearly demonstrate electromagnetically induced transparency.

60 citations


Journal ArticleDOI
TL;DR: In this article, photoinduced generation of a partially charge separated (PCS) state with a lifetime of days has been detected in the "visual" mode during the decay of excited states to a commonly observed fully charge separated state for viologen analogues.
Abstract: Charge-separated states with a lifetime scale of seconds or longer not only favor studies using various steady-state analysis techniques but are important for light-energy conversion and other applications. Through a steric-hindrance-induced method, unprecedented photoinduced generation of a partially charge separated (PCS) state with a lifetime of days has been detected in the "visual" mode during the decay of excited states to a commonly observed fully charge separated (FCS) state for viologen analogues. One pale yellow 4,4'-bipyridine-based metalloviologen compound, with an interannular dihedral angle of 1.84° in 4,4'-bipyridine, directly decays to the purple FCS state after photoexcitation. The other pale yellow compound, with a similar coordination framework but a larger interannular dihedral angle (33.74°), changes first to a yellow PCS state and then relaxes slowly (in the dark in Ar, ca. 2 days; 70 °C in Ar, ca. 1 h) to the purple FCS state. The two-step coloration phenomenon is unprecedented for viologen compounds and their analogues and also rather rare for other photochromic species. EPR and Raman data reveal that photoinduced charge separation first generates univalent zinc and radicals and then the received electron in Zn(I) slowly distributes further to 4,4'-bipyridine. Reduction of π-conjugation and a direct to indirect change in band gap account for the prolongation of the relaxation process and the capture of the PCS state. These findings help to understand and control decay processes of excited states and provide a potential design strategy for multicolor photochromism, light-energy conversion with high efficiency, or other applications.

59 citations


Journal ArticleDOI
TL;DR: In this article, a highly emissive metal-free purely organic fluorophore that enables thermal equilibration between singlet and triplet excited states is presented, where the spin-flipping reverse intersystem crossing from the triplet to singlet excited states with a rate constant exceeding 108 per second is described.
Abstract: In any complex molecular system, electronic excited states with different spin multiplicities can be described via a simple statistical thermodynamic formalism if the states are in thermal equilibrium. However, this ideal situation has hitherto been infeasible for efficient fluorescent organic molecules. Here, we report a highly emissive metal-free purely organic fluorophore that enables thermal equilibration between singlet and triplet excited states. The key to this unconventional excitonic behavior is the exceptionally fast spin-flipping reverse intersystem crossing from the triplet to singlet excited states with a rate constant exceeding 108 per second, which is considerably higher than that of radiative decay (fluorescence) from the singlet excited state. The present fluorophoric system exhibits an emission lifetime as short as 750 nanoseconds and, therefore, allows organic light-emitting diodes to demonstrate external electroluminescence quantum efficiency exceeding 20% even at a practical high luminance of more than 10,000 candelas per square meter.

59 citations


Journal ArticleDOI
TL;DR: In this article, the energy level relationships between the spiral donor and the luminophore lead to a significant effect on the photoluminescent quantum yields (PLQYs) of the target materials.
Abstract: Thermally activated delayed fluorescence (TADF) emitters with a spiral donor show tremendous potential toward high-level efficient blue organic light-emitting diodes (OLEDs). However, the underlying design strategy of the spiral donor used for blue TADF emitters remains unclear. As a consequence, researchers often do "try and error" work in the development of new functional spiral donor fragments, making it slow and inefficient. Herein, we demonstrate that the energy level relationships between the spiral donor and the luminophore lead to a significant effect on the photoluminescent quantum yields (PLQYs) of the target materials. In addition, a method involving quantum chemistry simulations that can accurately predict the aforementioned energy level relationships by simulating the spin density distributions of the triplet excited states of the spiral donor and corresponding TADF emitters and the triplet excited natural transition orbitals of the TADF emitters is established. Moreover, it also revealed that the steric hindrance in this series of molecules can form a nearly unchanged singlet (S1) state geometry, leading to a reduced nonradiative decay and high PLQY, while a moderated donor-acceptor (D-A) torsion in the triplet (T1) state can induce a strong vibronic coupling between the charge-transfer triplet (3CT) state and the local triplet (3LE) state, achieving an effective reverse intersystem crossing (RISC) process. Furthermore, an electric-magnetic coupling is formed between the high-lying 3LE state and the charge-transfer singlet (1CT) state, which may open another RISC channel. Remarkably, in company with the optimized molecular structure and energy alignment, the pivotal TADF emitter DspiroS-TRZ achieved 99.9% PLQY, an external quantum efficiency (EQE) of 38.4%, which is the highest among all blue TADF emitters reported to date.

59 citations


Journal ArticleDOI
TL;DR: In this article, the authors extend the concept of Boltzmann thermometry to more than two excited levels and provide quantitative guidelines that link the choice of energy gaps between multiple excited states to the performance in different temperature windows.
Abstract: Ratiometric luminescence thermometry with trivalent lanthanide ions and their 4fn energy levels is an emerging technique for non-invasive remote temperature sensing with high spatial and temporal resolution. Conventional ratiometric luminescence thermometry often relies on thermal coupling between two closely lying energy levels governed by Boltzmann’s law. Despite its simplicity, Boltzmann thermometry with two excited levels allows precise temperature sensing, but only within a limited temperature range. While low temperatures slow down the nonradiative transitions required to generate a measurable population in the higher excitation level, temperatures that are too high favour equalized populations of the two excited levels, at the expense of low relative thermal sensitivity. In this work, we extend the concept of Boltzmann thermometry to more than two excited levels and provide quantitative guidelines that link the choice of energy gaps between multiple excited states to the performance in different temperature windows. By this approach, it is possible to retain the high relative sensitivity and precision of the temperature measurement over a wide temperature range within the same system. We demonstrate this concept using YAl3(BO3)4 (YAB):Pr3+, Gd3+ with an excited 6PJ crystal field and spin-orbit split levels of Gd3+ in the UV range to avoid a thermal black body background even at the highest temperatures. This phosphor is easily excitable with inexpensive and powerful blue LEDs at 450 nm. Zero-background luminescence thermometry is realized by using blue-to-UV energy transfer upconversion with the Pr3+−Gd3+ couple upon excitation in the visible range. This method allows us to cover a temperature window between 30 and 800 K.

59 citations


Journal ArticleDOI
TL;DR: In this article, a series of Ba2La2ZnW2O12:Sm3+ (BLZWO:Sm 3+) phosphors were synthesized and their crystal structure, morphology, and luminescence properties were investigated.

Journal ArticleDOI
TL;DR: In this paper, a spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl)pyridine) shifted to higher energy from ca. 780 nm observed for known highly emissive chromium(III) complexes to 709 nm.
Abstract: Gaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge transfer states described by spatially separated orbitals, the energies of spin-flip states cannot straightforwardly be predicted as Pauli repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl)pyridine) shifted to higher energy from ca. 780 nm observed for known highly emissive chromium(III) complexes to 709 nm. The photoluminescence quantum yields climb to 20%, and very long excited state lifetimes in the millisecond range are achieved at room temperature in acidic D2O solution. Partial ligand deuteration increases the quantum yield to 25%. The high excited state energy of [Cr(bpmp)2]3+ and its facile reduction to [Cr(bpmp)2]2+ result in a high excited state redox potential. The ligand's methylene bridge acts as a Bronsted acid quenching the luminescence at high pH. Combined with a pH-insensitive chromium(III) emitter, ratiometric optical pH sensing is achieved with single wavelength excitation. The photophysical and ground state properties (quantum yield, lifetime, redox potential, and acid/base) of this spin-flip complex incorporating an earth-abundant metal surpass those of the classical precious metal [Ru(α-diimine)3]2+ charge transfer complexes, which are commonly employed in optical sensing and photo(redox) catalysis, underlining the bright future of these molecular ruby analogues.

Journal ArticleDOI
TL;DR: This Account highlights research on developing a fundamental understanding of structure-property relationships for manipulation of DESs in organic materials in relation to phototheranostic applications, and introduces the concept of smart PDT where highly efficient ISC imparted by geometry twisting in the acidic environment specific to tumors leads to very efficient and highly localized PDT, thus leaving surrounding healthy tissues at a different pH unaffected.
Abstract: ConspectusManipulating the dynamics of dark excited states (DESs), such as higher excited singlet or excited triplet states with no or small radiative decay, are of both fundamental and practical i...

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the coherent creation of a single NaCs molecule in its rotational, vibrational, and electronic (rovibronic) ground state in an optical tweezer.
Abstract: We demonstrate the coherent creation of a single NaCs molecule in its rotational, vibrational, and electronic (rovibronic) ground state in an optical tweezer. Starting with a weakly bound Feshbach molecule, we locate a two-photon transition via the |c^{3}Σ_{1},v^{'}=26⟩ excited state and drive coherent Rabi oscillations between the Feshbach state and a single hyperfine level of the NaCs rovibronic ground state |X^{1}Σ,v^{''}=0,N^{''}=0⟩ with a binding energy of D_{0}=h×147044.63(11) GHz. We measure a lifetime of 3.4±1.6 s for the rovibronic ground state molecule, which possesses a large molecule-frame dipole moment of 4.6D and occupies predominantly the motional ground state. These long-lived, fully quantum-state-controlled individual dipolar molecules provide a key resource for molecule-based quantum simulation and information processing.

Journal ArticleDOI
29 Jan 2021-Science
TL;DR: In this paper, the fastest electronic relaxation dynamics measured to date by extending at the intersection of two conical intersections was observed. But the authors did not specify the time complexity of such intersections.
Abstract: Conical intersections allow electronically excited molecules to return to their electronic ground state. Here, we observe the fastest electronic relaxation dynamics measured to date by extending at...

Journal ArticleDOI
TL;DR: In this paper, a review of recent theoretical investigations of excited state dynamics in metal halide perovskites (MHPs), carried out using a state-of-the-art methodology combining nonadiabatic molecular dynamics with real-time time-dependent density functional theory, is presented.
Abstract: Photoinduced nonequilibrium processes in nanoscale materials play key roles in photovoltaic and photocatalytic applications. This review summarizes recent theoretical investigations of excited state dynamics in metal halide perovskites (MHPs), carried out using a state-of-the-art methodology combining nonadiabatic molecular dynamics with real-time time-dependent density functional theory. The simulations allow one to study evolution of charge carriers at the ab initio level and in the time-domain, in direct connection with time-resolved spectroscopy experiments. Eliminating the need for the common approximations, such as harmonic phonons, a choice of the reaction coordinate, weak electron–phonon coupling, a particular kinetic mechanism, and perturbative calculation of rate constants, we model full-dimensional quantum dynamics of electrons coupled to semiclassical vibrations. We study realistic aspects of material composition and structure and their influence on various nonequilibrium processes, including nonradiative trapping and relaxation of charge carriers, hot carrier cooling and luminescence, Auger-type charge–charge scattering, multiple excitons generation and recombination, charge and energy transfer between donor and acceptor materials, and charge recombination inside individual materials and across donor/acceptor interfaces. These phenomena are illustrated with representative materials and interfaces. Focus is placed on response to external perturbations, formation of point defects and their passivation, mixed stoichiometries, dopants, grain boundaries, and interfaces of MHPs with charge transport layers, and quantum confinement. In addition to bulk materials, perovskite quantum dots and 2D perovskites with different layer and spacer cation structures, edge passivation, and dielectric screening are discussed. The atomistic insights into excited state dynamics under realistic conditions provide the fundamental understanding needed for design of advanced solar energy and optoelectronic devices.

Journal ArticleDOI
TL;DR: Excited-state catalysis, a process that involves one or more excited catalytic species, has emerged as a powerful tool in organic synthesis because it allows access to the excited-state reaction.
Abstract: Excited-state catalysis, a process that involves one or more excited catalytic species, has emerged as a powerful tool in organic synthesis because it allows access to the excited-state reaction la...

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors showed that nonpolar solvents play a more vital role in enhancing dual hydrogen bonds in S1 state and verified the excited state intramolecular single proton transfer (ESISPT) mechanism for HDBB.

Journal ArticleDOI
TL;DR: The introduction of π spacers in BPTCz not only enhances locally excited character with a fast radiative decay but also promotes intermolecular interactions to suppress non-radiative decays, contributing to a high solid-state fluorescence efficiency over 90%.
Abstract: Pure organic emitters with full utilization of triplet excitons are in high demand for organic light-emitting diodes (OLEDs). Herein, through modulation of electron donors and introduction of phenyl rings as π spacers, we present three pure organic fluorophores (BCz, BTCz and BPTCz) with the hybridized local and charge-transfer (HLCT) excited state feature for OLED fabrication. Importantly, the introduction of π spacers in BPTCz not only enhances locally excited character with a fast radiative decay but also promotes intermolecular interactions to suppress non-radiative decays, contributing to a high solid-state fluorescence efficiency over 90%. Significantly, BPTCz not only endows its doped OLEDs with an external quantum efficiency (EQE) up to 19.5%, but also its non-doped OLED with a high EQE of 17.8%, and these outstanding efficiencies are the state-of-the-art performances of HLCT-based OLEDs.

Journal ArticleDOI
TL;DR: In this paper, the authors reported the first experimental frequency-upconverted fluorescence and stimulated emission by simultaneous six-photon excitation in organic molecular system, which is based on cross-shaped spiro-fused ladder-type oligo(p-phenylene)s (SpL-z, z=1-3).
Abstract: The frequency-upconverted fluorescence and stimulated emission induced by multi-photon absorption (MPA) have attracted much interest. As compared with low-order MPA process, the construction of high-order MPA process is highly desirable and rather attractive, yet remains a formidable challenge due to its inherent low transition probability. Herein, we report the observation of the first experimental frequency-upconverted fluorescence and stimulated emission by simultaneous six-photon excitation in organic molecular system. The well designed organic conjugated system based on cross-shaped spiro-fused ladder-type oligo(p-phenylene)s (SpL-z, z=1-3) manifests quite high MPA cross-sections and brilliant luminescence emission simultaneously. The six-photon absorption cross-section of SpL-3 with an extended π-conjugation was evaluated as 8.67 × 10-169 cm12 s5 photon-5. Exceptionally efficient 2- to 6-photon excited stimulated emission have been achieved under near-infrared laser excitation.

Journal ArticleDOI
TL;DR: In this article, the formation of exciton-polaritons using excited excitonic states in monolayer tungsten diselenide (WSe2) embedded in a microcavity was demonstrated.
Abstract: Strong optical nonlinearities play a central role in realizing quantum photonic technologies. Exciton-polaritons, which result from the hybridization of material excitations and cavity photons, are an attractive candidate to realize such nonlinearities. While the interaction between ground state excitons generates a notable optical nonlinearity, the strength of such interactions is generally not sufficient to reach the regime of quantum nonlinear optics. Excited states, however, feature enhanced interactions and therefore hold promise for accessing the quantum domain of single-photon nonlinearities. Here we demonstrate the formation of exciton-polaritons using excited excitonic states in monolayer tungsten diselenide (WSe2) embedded in a microcavity. The realized excited-state polaritons exhibit an enhanced nonlinear response ∼[Formula: see text] which is ∼4.6 times that for the ground-state exciton. The demonstration of enhanced nonlinear response from excited exciton-polaritons presents the potential of generating strong exciton-polariton interactions, a necessary building block for solid-state quantum photonic technologies.

Journal ArticleDOI
TL;DR: In this article, a dual-intramolecular hydrogen bonding structure of a chromophore (N, N, N,-bis (salicylidene)-(2-(3″4′-diaminophenyl) benzothiazole) (BTS)) with double hydrogen bond structure was synthesized, and the typical excited-state intramolescular proton transfer (ESIPT) fluorescence phenomenon was observed in dichloromethane (DCM) was observed.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the unconventional emission properties and applications of transition metal complexes that were reported mainly in the past decade by focusing on the structural factors that are at play in realizing the novel excited state properties.

Journal ArticleDOI
TL;DR: A series of new naphthalimide and phenothiazine-based push-pull systems (NPI-PTZ1-5), in which we structurally modulate the oxidation state of the sulfur atom in the thiazine ring, was designed and synthesized by the Pd-catalyzed Sonogashira crosscoupling reaction as mentioned in this paper.
Abstract: A series of new naphthalimide and phenothiazine-based push-pull systems (NPI-PTZ1-5), in which we structurally modulate the oxidation state of the sulfur atom in the thiazine ring, i.e., S(II), S(IV), and S(VI), was designed and synthesized by the Pd-catalyzed Sonogashira cross-coupling reaction. The effect of the sulfur oxidation state on the spectral, photophysical, and electrochemical properties was investigated. The steady-state absorption and emission results show that oxygen functionalization greatly improves the optical (absorption coefficient and fluorescence efficiency) and nonlinear optical (hyperpolarizability) features. The cyclic voltammetry experiments and the quantum mechanical calculations suggest that phenothiazine is a stronger electron donor unit relative to phenothiazine-5-oxide and phenothiazine-5,5-dioxide, while the naphthalimide is a strong electron acceptor in all cases. The advanced ultrafast spectroscopic measurements, transient absorption, and broadband fluorescence up conversion give insight into the mechanism of photoinduced intramolecular charge transfer. A planar intramolecular charge transfer (PICT) and highly fluorescent excited state are populated for the oxygen-functionalized molecules NPI-PTZ2,3 and NPI-PTZ5; on the other hand, a twisted intramolecular charge transfer (TICT) state is produced upon photoexcitation of the oxygen-free derivatives NPI-PTZ1 and NPI-PTZ4, with the fluorescence being thus significantly quenched. These results prove oxygen functionalization as a new effective synthetic strategy to tailor the photophysics of phenothiazine-based organic materials for different optoelectronic applications. While oxygen-functionalized compounds are highly fluorescent and promising active materials for current-to-light conversion in organic light-emitting diode devices, oxygen-free systems show very efficient photoinduced ICT and may be employed for light-to-current conversion in organic photovoltaics.

Journal ArticleDOI
TL;DR: In this paper, the ground-state and excited state dynamical behaviors for the novel 5-methoxy-salicylaldhyde azine compound were analyzed based on constructing potential energy surface (PES) and calculating Boltzmann distribution ratio.

Journal ArticleDOI
TL;DR: In this article, the steady state emission spectra and excited state lifetime were measured for 1440 distinct heteroleptic [Ir(C^N)2(N^N)]+ complexes prepared via combinatorial parallelized synthesis; 72% of the complexes were found to be luminescent, and the emission maxima of the library spanned the visible spectrum (652-459 nm).
Abstract: Steady state emission spectra and excited state lifetimes were measured for 1440 distinct heteroleptic [Ir(C^N)2(N^N)]+ complexes prepared via combinatorial parallelized synthesis; 72% of the complexes were found to be luminescent, and the emission maxima of the library spanned the visible spectrum (652-459 nm). Spectral profiles ranged from broad structureless bands to narrow emissions exhibiting vibrational substructure. Measured excited state lifetimes ranged between ∼0.1-14 μs. Automated emission spectral fitting with successive Gaussian functions revealed four distinct measured classes of excited states; in addition to well understood metal-ligand to ligand-charge transfer (3MLLCT) and ligand-centered (3LC) excited states, our classification also identified photophysical characteristics of less explored mixed 3MLLCT/3LC states. Electronic structure features obtained from DFT calculations performed on a large subset of these Ir(III) chromophores offered clear insights into the excited state properties and allowed the prediction of structure/luminescence relationships in this class of commonly used photocatalysts. Models with high prediction accuracy (R2 = 0.89) for emission color were developed on the basis of experimental data. Furthermore, different degrees of nuclear reorganization in the excited state were shown to significantly impact emission energy and excited state lifetimes.

Journal ArticleDOI
01 Apr 2021
TL;DR: In this paper, the authors proposed a low-energy nuclear clock using the excitation of a low energy excited state in the 229 th nucleus, which can provide high accuracy and sensitivity to new physics.
Abstract: The 229Th nucleus has an isomeric state at an energy of about 8 eV above the ground state, several orders of magnitude lower than typical nuclear excitation energies. This has inspired the development of a field of low-energy nuclear physics in which nuclear transition rates are influenced by the electron shell. The low energy makes the 229Th isomer accessible to resonant laser excitation. Observed in laser-cooled trapped thorium ions or with thorium dopant ions in a transparent solid, the nuclear resonance may serve as the reference for an optical clock of very high accuracy. Precision frequency comparisons between such a nuclear clock and conventional atomic clocks will provide sensitivity to the effects of hypothetical new physics beyond the standard model. Although laser excitation of 229Th remains an unsolved challenge, recent experiments have provided essential information on the transition energy and relevant nuclear properties, advancing the field. A clock using the excitation of a low-energy excited state in the 229Th nucleus promises high accuracy and sensitivity to new physics. The recently measured properties of this nucleus will lead to nuclear laser spectroscopy with trapped Th ions and Th-doped crystals.

Journal ArticleDOI
TL;DR: In this article, a general method for deriving the energy shift of an interacting system of N spinless particles in a finite volume is presented, where relativistic corrections are explicitly included up to a given order in the 1/L expansion.
Abstract: We present a general method for deriving the energy shift of an interacting system of N spinless particles in a finite volume To this end, we use the nonrelativistic effective field theory (NREFT), and match the pertinent low-energy constants to the scattering amplitudes Relativistic corrections are explicitly included up to a given order in the 1/L expansion We apply this method to obtain the ground state of N particles, and the first excited state of two and three particles to order L−6 in terms of the threshold parameters of the two- and three-particle relativistic scattering amplitudes We use these expressions to analyze the N-particle ground state energy shift in the complex φ4 theory

Journal ArticleDOI
11 May 2021
TL;DR: Hybridized local and charge transfer (HLCT) excited state fluorophores as discussed by the authors enable full exciton utilization through a reverse intersystem crossing from high-lying triplet states to singlet state.
Abstract: Hybridized local and charge-transfer (HLCT) excited-state fluorophores, which enable full exciton utilization through a reverse intersystem crossing from high-lying triplet states to singlet state,

Journal ArticleDOI
TL;DR: In this paper, the authors show that the current sensitivities of direct detection experiments have already reached the interesting parameter space of freeze-in dark matter models if the dark sector is in the inelastic dark matter framework and the excited dark matter state is cosmologically stable using results recently presented by the XENON1T experiment.