scispace - formally typeset
Search or ask a question

Showing papers on "Excited state published in 2022"


Journal ArticleDOI
TL;DR: In this article , an updated review of the recent experimental and theoretical progresses in the active field of hadron physics has been provided, including the recently observed open heavy flavor tetraquark states X(2900) and Tcc+(3875) as well as the hidden heavy flavor multiquark states.
Abstract: The past decades witnessed the golden era of hadron physics. Many excited open heavy flavor mesons and baryons have been observed since 2017. We shall provide an updated review of the recent experimental and theoretical progresses in this active field. Besides the conventional heavy hadrons, we shall also review the recently observed open heavy flavor tetraquark states X(2900) and Tcc+(3875) as well as the hidden heavy flavor multiquark states X(6900), Pcs(4459)0 , Zcs(3985)− , Zcs(4000)+ , and Zcs(4220)+ . We will also cover the recent progresses on the glueballs and light hybrid mesons, which are the direct manifestations of the non-Abelian SU(3) gauge interaction of the Quantum Chromodynamics in the low-energy region.

109 citations


Journal ArticleDOI
TL;DR: This review summarised the significant achievements of photo-driven theranostics based on AIEgens, which were detailedly elaborated and classified by their diverse theranostic modalities into three groups: fluorescence imaging- guided photodynamic therapy, photoacoustic imaging-guided photothermal therapy, and multi-modality the Branostics.
Abstract: Photo-driven theranostics, also known as phototheranostics, relying on the diverse excited-state energy conversions of theranostic agents upon photoexcitation represents a significant branch of theranostics, which ingeniously integrate diagnostic imaging and therapeutic interventions into a single formulation. The combined merits of photoexcitation and theranostics endow photo-driven theranostics with numerous superior features. The applications of aggregation-induced emission luminogens (AIEgens), a particular category of fluorophores, in the field of photo-driven theranostics have been intensively studied by virtue of their versatile advantageous merits of favorable biocompatibility, tuneable photophysical properties, unique aggregation-enhanced theranostic (AET) features, ideal AET-favored on-site activation ability and ready construction of one-for-all multimodal theranostics. This review summarised the significant achievements of photo-driven theranostics based on AIEgens, which were detailedly elaborated and classified by their diverse theranostic modalities into three groups: fluorescence imaging-guided photodynamic therapy, photoacoustic imaging-guided photothermal therapy, and multi-modality theranostics. Particularly, the tremendous advantages and individual design strategies of AIEgens in pursuit of high-performance photosensitizing output, high photothermal conversion and multimodal function capability by adjusting the excited-state energy dissipation pathways are emphasized in each section. In addition to highlighting AIEgens as promising templates for modulating energy dissipation in the application of photo-driven theranostics, current challenges and opportunities in this field are also discussed.

105 citations


Journal ArticleDOI
TL;DR: In this article , the authors provide a summary of the significant advances in amorphous organic RTP polymer systems, especially smart stimulus-responsive ones, focusing on the construction of a rigid environment to suppress nonradiative deactivation by abundant inter/intramolecular interactions.
Abstract: ConspectusLong-lived organic room-temperature phosphorescence (RTP) materials have recently drawn extensive attention because of their promising applications in information security, biological imaging, optoelectronic devices, and intelligent sensors. In contrast to conventional fluorescence, the RTP phenomenon originates from the slow radiative transition of triplet excitons. Thus, enhancing the intersystem crossing (ISC) rate from the lowest excited singlet state (S1) to the excited triplet state and suppressing the nonradiative relaxation channels of the lowest excited triplet state (T1) are reasonable methods for realizing highly efficient RTP in purely organic materials. Over the past few decades, many strategies have been designed on the basis of the above two crucial factors. The introduction of heavy atoms, aromatic carbonyl groups, and other heteroatoms with abundant lone-pair electrons has been demonstrated to strengthen the spin-orbit coupling, thereby successfully facilitating the ISC process. Furthermore, the rigid environment is commonly constructed through crystal engineering to restrict intramolecular motions and intermolecular collisions to decrease excited-state energy dissipation. However, most crystal-based organic RTP materials suffer from poor processability, flexibility, and reproducibility, becoming a thorny obstacle to their practical application.Amorphous organic polymers with long-lived RTP characteristics are more competitive in materials science. The intertwined structures and long chains of polymers not only ensure the rigid environment with multiple interactions but also protect triplet excitons from the surroundings, which are conducive to realizing ultralong and bright RTP emission. Exploring the fabrication strategies, intrinsic mechanisms, and practical applications of organic long-lived RTP polymers is highly desirable but remains a formidable challenge. In particular, intelligent organic RTP polymer systems that are capable of dynamically responding to external stimuli (e.g., light, temperature, oxygen, and humidity) have been rarely reported. To develop multifunctional RTP materials and expand their potential applications, a great amount of effort has been expended.This Account gives a summary of the significant advances in amorphous organic RTP polymer systems, especially smart stimulus-responsive ones, focusing on the construction of a rigid environment to suppress nonradiative deactivation by abundant inter/intramolecular interactions. The typical interactions in RTP polymer systems mainly include hydrogen bonding, ionic bonding, and covalent bonding, which can change the molecular electronic structures and affect the energy dissipation channels of the excited states. An in-depth understanding of intrinsic mechanisms and an extensive exploration of potential applications for excitation-dependent color-tunable, ultraviolet (UV) irradiation-activated, temperature-dependent, water-responsive, and circularly polarized RTP polymer systems are distinctly illustrated in this Account. Furthermore, we propose some detailed perspectives in terms of materials design, mechanism exploration, and promising application potential with the hope to provide helpful guidance for the future development of amorphous organic RTP polymers.

80 citations


Journal ArticleDOI
TL;DR: In this paper, the propagation properties of all-dielectric metamaterials (ADMs) based on a SiO2-Si asymmetric hybrid block, including the effects of structural parameters, asymmetrical degrees, carrier doping concentrations, and graphene Fermi levels, were investigated.
Abstract: We investigated the propagation properties of all-dielectric metamaterials (ADMs) based on a SiO2-Si asymmetric hybrid block, including the effects of structural parameters, asymmetrical degrees, carrier doping concentrations, and graphene Fermi levels. The Q-factor of Fano resonance reaches more than 270, and the amplitude modulation depth (MD) is about 75% if the asymmetric degree changes in the range of 2–10 μm. The carrier concentration of silicon significantly affects the intensity of excited Fano resonance. When the carrier concentration of Si is 1 × 1014 cm−3, the excited Fano resonance is the strongest, and the transmission peak is about 0.92. With the help of a uniform graphene layer, the Fano resonance can be effectively modulated, the frequency MD is about 20% if the Fermi level changes in the scope of 0.01–0.3 eV. These results can help us to design THz high Q-factor devices, such as sensors, filters, and modulators.

58 citations


Journal ArticleDOI
01 Feb 2022
TL;DR: In this paper , the propagation properties of all-dielectric metamaterials (ADMs) based on a SiO2-Si asymmetric hybrid block, including the effects of structural parameters, asymmetrical degrees, carrier doping concentrations, and graphene Fermi levels, were investigated.
Abstract: We investigated the propagation properties of all-dielectric metamaterials (ADMs) based on a SiO2-Si asymmetric hybrid block, including the effects of structural parameters, asymmetrical degrees, carrier doping concentrations, and graphene Fermi levels. The Q-factor of Fano resonance reaches more than 270, and the amplitude modulation depth (MD) is about 75% if the asymmetric degree changes in the range of 2–10 μm. The carrier concentration of silicon significantly affects the intensity of excited Fano resonance. When the carrier concentration of Si is 1 × 1014 cm−3, the excited Fano resonance is the strongest, and the transmission peak is about 0.92. With the help of a uniform graphene layer, the Fano resonance can be effectively modulated, the frequency MD is about 20% if the Fermi level changes in the scope of 0.01–0.3 eV. These results can help us to design THz high Q-factor devices, such as sensors, filters, and modulators.

56 citations


Journal ArticleDOI
04 Jan 2022
TL;DR: These findings provide not only new insights into the excited-state dynamics of Bi3+ and Te4+ in Cs2SnCl6, but also a general approach to achieve single-composition white-light emitters based on lead-free metal halides through ns2-metal ion co-doping.
Abstract: Luminescent metal halides have attracted considerable attention in next-generation solid-state lighting because of their superior optical properties and easy solution processibility. Herein, we report a new class of highly efficient and dual-band tunable white-light emitters based on Bi3+/Te4+ co-doped perovskite derivative Cs2SnCl6 microcrystals. Owing to the strong electron-phonon coupling and efficient energy transfer from Bi3+ to Te4+, the microcrystals exhibited broad dual-band white-light emission originating from the inter-configurational 3P0,1 → 1S0 transitions of Bi3+ and Te4+, with good stability and a high photoluminescence (PL) quantum yield up to 68.3%. Specifically, a remarkable transition in Bi3+-PL lifetime from milliseconds at 10 K to microseconds at 300 K was observed, as a solid evidence for the isolated Bi3+ emission. These findings provide not only new insights into the excited-state dynamics of Bi3+ and Te4+ in Cs2SnCl6, but also a general approach to achieve single-composition white-light emitters based on lead-free metal halides through ns2-metal ion co-doping.

45 citations


Journal ArticleDOI
01 Jun 2022-Carbon
TL;DR: In this paper , the formation process of carbon dots was elucidated and the structural model was also proposed in which the key intermediates were revealed, and the optical properties of the C-dots could be reversibly tuned via a facile protonation-deprotonation process.

44 citations


Journal ArticleDOI
TL;DR: In this paper , a bottom-up self-assembly of transparent metal-organic framework (MOF) bulk glasses exhibiting direct ultralong allphosphorescence (lifetime: 630.15 ms) with a PLQY of up to 75% at ambient conditions was reported.
Abstract: Realizing efficient and ultralong room-temperature phosphorescence (RTP) is highly desirable but remains a challenge due to the inherent competition between excited state lifetime and photoluminescence quantum yield (PLQY). Herein, we report the bottom-up self-assembly of transparent metal-organic framework (MOF) bulk glasses exhibiting direct ultralong all-phosphorescence (lifetime: 630.15 ms) with a PLQY of up to 75% at ambient conditions. These macroscopic MOF glasses have high Young's modulus and hardness, which provide a rigid environment to reduce non-radiative transitions and boost triplet excitons. Spectral technologies and theoretical calculations demonstrate the photoluminescence of MOF glasses is directly derived from the different triplet excited states, indicating the great capability for color-tunable afterglow emission. We further developed information storage and light-emitting devices based on the efficient and pure RTP of the fabricated MOF photonic glasses.

42 citations


Journal ArticleDOI
TL;DR: In this article , a detailed density functional theory and time-dependent DFT investigation of the excited state characteristics and the influence of various solvents: water, acetone, ethanol and chloroform on the photophysical properties of enalapril and lisinopril were investigated along with the experimental spectral (UV-vis and FT-IR) analysis.

41 citations


Journal ArticleDOI
TL;DR: In this paper , the physical parameters relating to persistent room temperature phosphorescence (pRTP) and appropriate techniques for measuring the parameters are explained. And the potential advantages of pRTP over previous persistent emitters are discussed.
Abstract: Persistent room temperature phosphorescence (pRTP) is important to high-resolution imaging independent of autofluorescence and the scattering of excitation light for security and imaging applications. Although efficient and bright pRTP is crucial to imaging applications, photophysical processes from the triple states of heavy-atom-free chromophores have been explained by making many assumptions that are potentially based on incorrect photophysical explanations. This often confuses researchers in their efforts to control and enhance the pRTP characteristics. This paper introduces recent advances in our understanding of photophysical processes from the lowest triplet excited state of heavy-atom-free chromophores based on statistical evidence from experimental and theoretical viewpoints. After the introduction of two photophysical processes showing persistent RT emissions and the characteristics of the persistent emissions, physical parameters relating to pRTP and appropriate techniques for measuring the parameters are explained. For molecularly dispersed heavy-metal-free chromophores in a solid state, recent understandings of the physical parameters verified by correlations from optically estimated and theoretical viewpoints are summarized. Using the photophysical insights obtained for the dispersed chromophores, uncertainties regarding the photophysical processes of aggregated chromophores are discussed. After highlighting recently developed materials showing efficient pRTP, the potential advantages of pRTP over previous persistent emissions are discussed considering recent demonstrations of persistent emitters. This review quantitatively summarizes the relationship between the molecular backbone and physical parameters of pRTP characteristics and guides the reader in their efforts to appropriately design materials with efficient pRTP and control long-lived triplet excitons for promising applications.

41 citations


Journal ArticleDOI
TL;DR: In this paper , a systematic analysis of the performances of luminescence thermometers based on transition metal ion activated phosphors is presented, and the relations among the TM spectroscopic properties, characteristics of the host material structure, and thermometric performance are discussed.

Journal ArticleDOI
TL;DR: In this paper , a detailed introduction of the generation, mechanism and application of light emissions, especially for those in aggregate or solid state, was introduced, and the classification of emissions with different types of excited states, thus summarizing the relationship between molecular structure/packing and emission property.

Journal ArticleDOI
TL;DR: In this article , the first example of excitationdependent persistent luminescence in a reverse mode for smart optical materials through tailoring the excitedstate proton transfer process of metal cytosine halide hybrids is reported.
Abstract: Persistent luminescence has attracted great attention due to the unique applications in molecular imaging, photodynamic therapy, and information storage, among many others. However, tuning the dynamic persistent luminescence through molecular design and materials engineering remains a challenge. In this work, the first example of excitation‐dependent persistent luminescence in a reverse mode for smart optical materials through tailoring the excited‐state proton transfer process of metal cytosine halide hybrids is reported. This approach enables ultralong phosphorescence and thermally activated delayed fluorescence emission colors highly tuned by modulation of excitation wavelength, time evolution, and temperature, which realize multi‐mode dynamic color adjustment from green to blue or cyan to yellow‐green. At the single crystal level, the 2D excitation/space/time‐resolved optical waveguides with triple color conversion have been constructed on the organic‐metal halide microsheets, which represent a new strategy for multi‐dimensional information encryption and optical logic gate applications.

Journal ArticleDOI
TL;DR: In this article , a blue light-excited, green-emitting Ce3+-activated CaY2ZrScAl3O12:1%Ce3+ phosphor was presented.
Abstract: Phosphor-containing white light-emitting diodes (LEDs) with low color-correlated temperatures (CCTs) and high color rendering indexes (CRIs) are highly desirable for energy-efficient and environmentally friendly solid-state light sources. Here, we report a new and efficient blue light-excited, green-emitting Ce3+-activated CaY2ZrScAl3O12 phosphor, which underpins the fabrication of high-color quality and full-visible-spectrum warm-white LED devices with ultrahigh CRI values (Ra > 96 and R9 > 96). A family of CaY2ZrScAl3O12:Ce3+ phosphors with different Ce3+ dopant concentrations were prepared by high-temperature solid-state synthesis. X-ray diffraction and corresponding Rietveld refinement reveal a garnet structure with an Ia3̅d space group and crystallographic parameters a = b = c = 12.39645(8) Å, α = β = γ = 90°, and V = 1904.99(4) Å3. Luminescence properties were studied in detail as a function of Ce3+ with the optimal concentration 1% mol. Impressively, CaY2ZrScAl3O12:1%Ce3+ exhibits a broad excitation band from 370 to 500 nm, peaking at ∼421 nm, which is well matched with emission from commercial blue LED chips. Under 421 nm excitation, the CaY2ZrScAl3O12:1%Ce3+ phosphor produces dazzling green light in a wide emission band from 435 to 750 nm (emission peak: 514 nm; full width at half-maximum: 113 nm), with a high internal quantum efficiency of 63.1% and good resistance to thermal quenching (activation energy of 0.28 eV). A white LED device combining a 450 nm blue LED chip with CaY2ZrScAl3O12:1%Ce3+ green phosphor and commercial CaAlSiN3:Eu2+ red phosphor as color converters demonstrates bright warm-white light with excellent CIE color coordinates of (0.3938, 0.3819), low CCT of 3696 K, high CRI (Ra = 96.9, R9 = 98.2), and high luminous efficacy of 45.04 lm W-1 under a 20 mA driving current. New green phosphors enable the design and implementation of efficient luminescent materials for healthy solid-state lighting.

Journal ArticleDOI
TL;DR: In this article , a femtosecond time-resolved transient absorption spectroscopy, in situ Fourier transform infrared (FTI) spectrograms, and synchronous illumination X-ray photoelectron spectrography were combined with theoretical analysis to reveal that in complex bimetallic oxyhalides, the ultrathin rich oxygen vacancies (ROV) PbBiO2Cl (PBOC) double unit cell (DUC) layers facilitate migration and separation of photogenerated electrons from the bulk to Bi sites near the surface oxygen vacancies.
Abstract: Most of the current research on the photocatalytic mechanism of semiconductors is still on the simulation and evaluation of ground‐state active sites. Insights into photogenerated electron transition paths and excited‐state active sites during photocatalysis are still insufficient. Herein, combining femtosecond time‐resolved transient absorption spectroscopy, in situ Fourier‐transform infrared spectroscopy, synchronous illumination X‐ray photoelectron spectroscopy, and theoretical calculation results rationally reveal that in complex bimetallic oxyhalides the ultrathin rich oxygen vacancies (ROV) PbBiO2Cl (PBOC) double unit cell (DUC) layers facilitate migration and separation of photogenerated electrons from the bulk to Bi sites near the surface oxygen vacancies (OVs), then form the excited electron‐rich Bi(3–x)+ sites like quantum well structure. The excited Bi(3–x)+ sites act as wells for photogenerated electrons leading to lower energy barrier in the rate determining step for the formation of *CO from *COOH intermediate. Without photosensitizers and sacrificial agents, ROV DUC PBOC exhibit high CO generation rate (16.02 µmol h–1 g–1) that is 18 times higher than that of bulk PBOC. In situ characterization combined with theoretical calculation provides effective insight into the photocatalytic mechanism of photoexcited semiconductor materials.

Journal ArticleDOI
TL;DR: An overview of recent progress on STE emission materials for optoelectronic applications is presented in this paper , where the relationships between the fundamental emission mechanisms, chemical compositions, and device performances are systematically reviewed.
Abstract: Self‐trapped excitons (STEs) have recently attracted tremendous interest due to their broadband emission, high photoluminescence quantum yield, and self‐absorption‐free properties, which enable a large range of optoelectronic applications such as lighting, displays, radiation detection, and special sensors. Unlike free excitons, the formation of STEs requires strong coupling between excited state excitons and the soft lattice in low electronic dimensional materials. The chemical and structural diversity of metal halides provides an ideal platform for developing efficient STE emission materials. Herein, an overview of recent progress on STE emission materials for optoelectronic applications is presented. The relationships between the fundamental emission mechanisms, chemical compositions, and device performances are systematically reviewed. On this basis, currently existing challenges and possible development opportunities in this field are presented.

Journal ArticleDOI
TL;DR: In this article , the safe excitation process by sunlight and mobile phone flashlight is realized by organic luminogens with various electronic pull-push systems, and the bright red RTP emission with lifetime up to 344 ms is achieved by optimizing molecular geometry and electronic property.
Abstract: Organic room temperature phosphorescence (RTP) materials with ultralong lifetime possess the remarkable advantage in bioimaging for elimination of background noise by characteristic time scale. However, most of RTP luminogens need to be excited by the harmful ultraviolet (UV) lamp, and exhibit green or yellow emission with shallow tissue penetration, constraining the in vivo bioimaging for further application in clinical diagnosis and pathological study. In this text, the much safer excitation process by sunlight and mobile phone flashlight is realized by organic luminogens with various electronic pull–push systems. Moreover, the bright red RTP emission with lifetime up to 344 ms is achieved by optimizing molecular geometry and electronic property. Especially, the mobile phone flashlight‐excited red afterglow imaging of lymph nodes in living mice has been realized for the first time, affording a safe and conventional approach to achieve the afterglow imaging of living mice with deep issue penetration and high signal‐to‐noise ratios.

Journal ArticleDOI
01 May 2022
TL;DR: In this paper , a rapid heating-up hydrothermal technique is developed to regulate ZnIn2S4 crystal growth, then, ultrathin ZnS4 nanosheets with In defect-rich [InS]6 interlayer but perfect [In]4 and [ZnS]4 surface layers are successfully prepared (ultra-ZIS-VIn).
Abstract: Defect engineering, inducing photo-excited electrons and holes to different surfaces of semiconductor photocatalyst, is an efficient strategy to improve the photocatalytic activity. A rapid heating-up hydrothermal technique is developed to regulate ZnIn2S4 crystal growth, then, ultrathin ZnIn2S4 nanosheets with In defect-rich [InS]6 interlayer but perfect [InS]4 and [ZnS]4 surface layers are successfully prepared (ultra-ZIS-VIn). Interestingly, the In defect, inducing the redistribution of the orbitals near the valence band maximum, separates the oxidation and reduction sites on the opposite sides of the ultra-ZIS-VIn nanosheets. Simultaneously, In defects increase the density of states (near the valence band maximum and conduction band minimum) and delocalize the electron around In defects. Accordingly, the photocatalytic hydrogen evolution rate is optimized to 13.4 mmol h−1 g−1, which is 8.9 times higher than that of defect-free ZnIn2S4 (pristine-ZIS).

Journal ArticleDOI
TL;DR: A luminescent and photoreactive iron(II) complex is reported, the first performant group homologue of prototypical sensitizers of ruthenium, and the use of the Fe( II) chromophore as a sensitizer for light-driven synthesis is exemplified by the radical cross-coupling of 4-chlorobromobenzene and benzene.
Abstract: Controlling the order and lifetimes of electronically excited states is essential to effective light-to-potential energy conversion by molecular chromophores. This work reports a luminescent and photoreactive iron(II) complex, the first performant group homologue of prototypical sensitizers of ruthenium. Double cyclometalation of a phenylphenanthroline framework at iron(II) favors the population of a triplet metal-to-ligand charge transfer (3MLCT) state as the lowest energy excited state. Near-infrared (NIR) luminescence exhibits a monoexponential decay with τ = 2.4 ns in the solid state and 1 ns in liquid phase. Lifetimes of 14 ns at 77 K are in line with a narrowing of the NIR emission band at λem,max = 1170-1230 nm. Featuring a 3MLCT excited-state redox potential of -2 V vs the ferrocene/ferrocenium couple, the use of the Fe(II) chromophore as a sensitizer for light-driven synthesis is exemplified by the radical cross-coupling of 4-chlorobromobenzene and benzene.

Journal ArticleDOI
TL;DR: In this paper , a class of NIR-emitting sonosensitizers from a NIR phosphorescent carbon dot (CD) material with a narrow bandgap (1.62 eV) and long-lived excited triplet states (11.4 μs), two of which can enhance sonodynamic therapy as thermodynamically and dynamically favorable factors under low-intensity ultrasound irradiation, respectively.
Abstract: Abstract Theranostic sonosensitizers with combined sonodynamic and near infrared (NIR) imaging modes are required for imaging guided sonodynamic therapy (SDT). It is challenging, however, to realize a single material that is simultaneously endowed with both NIR emitting and sonodynamic activities. Herein, we report the design of a class of NIR-emitting sonosensitizers from a NIR phosphorescent carbon dot (CD) material with a narrow bandgap (1.62 eV) and long-lived excited triplet states (11.4 μs), two of which can enhance SDT as thermodynamically and dynamically favorable factors under low-intensity ultrasound irradiation, respectively. The NIR-phosphorescent CDs are identified as bipolar quantum dots containing both p- and n-type surface functionalization regions that can drive spatial separation of e − –h + pairs and fast transfer to reaction sites. Importantly, the cancer-specific targeting and high-level intratumor enrichment of the theranostic CDs are achieved by cancer cell membrane encapsulation for precision SDT with complete eradication of solid tumors by single injection and single irradiation. These results will open up a promising approach to engineer phosphorescent materials with long-lived triplet excited states for sonodynamic precision tumor therapy.

Journal ArticleDOI
TL;DR: In this paper , a pure green TADF material with high kRISC of 105 s−1 was reported, which achieved a high maximum EQE of 31.9% and successfully suppresses the efficiency roll-off at a high luminance.
Abstract: Multiple resonance (MR)‐effect‐induced thermally activated delayed fluorescence (TADF) materials have garnered significant attention because they can achieve both high color purity and high external quantum efficiency (EQE). However, the reported green‐emitting MR‐TADF materials exhibit broader emission compared to those of blue‐emitting ones and suffer from severe efficiency roll‐off due to insufficient rate constants of reverse intersystem crossing process (kRISC). Herein, a pure green MR‐TADF material (ν‐DABNA‐CN‐Me) with high kRISC of 105 s−1 is reported. The key to success is introduction of cyano groups into a blue‐emitting MR‐TADF material (ν‐DABNA), which causes remarkable bathochromic shift without a loss of color purity. The organic light‐emitting diode employing it as an emitter exhibits green emission at 504 nm with a small full‐width at half‐maximum of 23 nm, corresponding to Commission Internationale d'Éclairage coordinates of (0.13, 0.65). The device achieves a high maximum EQE of 31.9% and successfully suppresses the efficiency roll‐off at a high luminance.

Journal ArticleDOI
TL;DR: In this article , the authors rationalize this behavior by the excitation energy-dependent pathways of internal photo-induced charge transfer studied via transient optical spectroscopies and time-dependent density-functional theory calculation.
Abstract: Rhenium(I)-carbonyl-diimine complexes have emerged as promising photocatalysts for carbon dioxide reduction with covalent organic frameworks recognized as perfect sensitizers and scaffold support. Such Re complexes/covalent organic frameworks hybrid catalysts have demonstrated high carbon dioxide reduction activities but with strong excitation energy-dependence. In this paper, we rationalize this behavior by the excitation energy-dependent pathways of internal photo-induced charge transfer studied via transient optical spectroscopies and time-dependent density-functional theory calculation. Under band-edge excitation, the excited electrons are quickly injected from covalent organic frameworks moiety into catalytic RheniumI center within picosecond but followed by fast backward geminate recombination. While under excitation with high-energy photon, the injected electrons are located at high-energy levels in RheniumI centers with longer lifetime. Besides those injected electrons to RheniumI center, there still remain some long-lived electrons in covalent organic frameworks moiety which is transferred back from RheniumI. This facilitates the two-electron reaction of carbon dioxide conversion to carbon monoxide.

Journal ArticleDOI
TL;DR: In this article , a dynamic Cd(II) coordination polymer (LIFM-101) from the ESIPT-type ligand, HPI2C (5-(2-(2-hydroxyphenyl)-4,5-diphenyl-1H-imidazol-1-yl)isophthalic acid) is presented.
Abstract: Excited-state intramolecular proton transfer (ESIPT) molecules demonstrating specific enol-keto tautomerism and the related photoluminescence (PL) switch have wide applications in displaying, sensing, imaging, lasing, etc. However, an ESIPT-attributed coordination polymer showing alternative PL between thermally activated fluorescence (TAF) and long persistent luminescence (LPL) has never been explored. Herein, we report the assembly of a dynamic Cd(II) coordination polymer (LIFM-101) from the ESIPT-type ligand, HPI2C (5-(2-(2-hydroxyphenyl)-4,5-diphenyl-1H-imidazol-1-yl)isophthalic acid). For the first time, TAF and/or color-tuned LPL can be achieved by controlling the temperature under the guidance of ESIPT excited states. Noteworthily, the twisted structure of the HPI2C ligand in LIFM-101 achieves an effective mixture of the higher-energy excited states, leading to ISC (intersystem crossing)/RISC (reverse intersystem crossing) energy transfer between the high-lying keto-triplet state (Tn(K*)) and the first singlet state (S1(K*)). Meanwhile, experimental and theoretical results manifest the occurrence probability and relevance among RISC, ISC, and internal conversion (IC) in this unique ESIPT-attributed coordination polymer, leading to the unprecedented TAF/LPL switching mechanism, and paving the way for the future design and application of advanced optical materials.

Journal ArticleDOI
TL;DR: In this article , a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics.
Abstract: The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.

Journal ArticleDOI
TL;DR: In this article , the authors rationalize this behavior by the excitation energy-dependent pathways of internal photo-induced charge transfer studied via transient optical spectroscopies and time-dependent density-functional theory calculation.
Abstract: Rhenium(I)-carbonyl-diimine complexes have emerged as promising photocatalysts for carbon dioxide reduction with covalent organic frameworks recognized as perfect sensitizers and scaffold support. Such Re complexes/covalent organic frameworks hybrid catalysts have demonstrated high carbon dioxide reduction activities but with strong excitation energy-dependence. In this paper, we rationalize this behavior by the excitation energy-dependent pathways of internal photo-induced charge transfer studied via transient optical spectroscopies and time-dependent density-functional theory calculation. Under band-edge excitation, the excited electrons are quickly injected from covalent organic frameworks moiety into catalytic RheniumI center within picosecond but followed by fast backward geminate recombination. While under excitation with high-energy photon, the injected electrons are located at high-energy levels in RheniumI centers with longer lifetime. Besides those injected electrons to RheniumI center, there still remain some long-lived electrons in covalent organic frameworks moiety which is transferred back from RheniumI. This facilitates the two-electron reaction of carbon dioxide conversion to carbon monoxide.

Journal ArticleDOI
TL;DR: In this article, a series of novel organic room temperature phosphorescent (ORTP) materials based on pyranone was designed and synthesized for printing and hand-painting on a wide range of media, showing an extremely ideal application prospect.

Journal ArticleDOI
TL;DR: In this article , a strategy via Sb3+ alloying was proposed to achieve highly emissive 0D In-based halide nanocrystals (NCs) and investigate the effect of NC size on the optical properties and excited-state dynamics.

Journal ArticleDOI
13 May 2022
TL;DR: In this paper , the authors proposed a protocol to dramatically improve the sensitizing ability of metal-organic frameworks (MOFs) by switching their excited state distribution from 3MLCT (metal-to-ligand charge transfer) to 3IL (intraligand).
Abstract: Photosensitization associated with electron / energy transfer represents the central science of natural photosynthesis. Herein, we proposed a protocol to dramatically improve the sensitizing ability of metal-organic frameworks (MOFs) by switching their excited state distribution from 3MLCT (metal-to-ligand charge transfer) to 3IL (intraligand). The hierarchical organization of 3IL MOFs and Co/Cu catalysts facilitates electron transfer for efficient photocatalytic H2 evolution with a yield of 26844.6 μmol g-1 and CO2 photoreduction with a record HCOOH yield of 4807.6 μmol g-1 among all the MOF photocatalysts. Systematic investigations demonstrate that strong visible-light-absorption, long-lived excited state and ingenious multi-component synergy in the 3IL MOFs can facilitate both interface and intra-framework electron transfer to boost photocatalysis. This work opens up an avenue to boost solar-energy conversion by engineering sensitizing centers at a molecular level.

Journal ArticleDOI
TL;DR: This study demonstrates how rational ligand design of transition-metal complexes (including underexplored second coordination sphere effects) can be used to enhance their photophysical properties and thereby broaden their application potential in solar energy conversion and synthetic photochemistry.
Abstract: Cyclometalated Ir(III) complexes are often chosen as catalysts for challenging photoredox and triplet-triplet-energy-transfer (TTET) catalyzed reactions, and they are of interest for upconversion into the ultraviolet spectral range. However, the triplet energies of commonly employed Ir(III) photosensitizers are typically limited to values around 2.5-2.75 eV. Here, we report on a new Ir(III) luminophore, with an unusually high triplet energy near 3.0 eV owing to the modification of a previously reported Ir(III) complex with isocyanoborato ligands. Compared to a nonborylated cyanido precursor complex, the introduction of B(C6F5)3 units in the second coordination sphere results in substantially improved photophysical properties, in particular a high luminescence quantum yield (0.87) and a long excited-state lifetime (13.0 μs), in addition to the high triplet energy. These favorable properties (including good long-term photostability) facilitate exceptionally challenging organic triplet photoreactions and (sensitized) triplet-triplet annihilation upconversion to a fluorescent singlet excited state beyond 4 eV, unusually deep in the ultraviolet region. The new Ir(III) complex photocatalyzes a sigmatropic shift and [2 + 2] cycloaddition reactions that are unattainable with common transition metal-based photosensitizers. In the presence of a sacrificial electron donor, it furthermore is applicable to demanding photoreductions, including dehalogenations, detosylations, and the degradation of a lignin model substrate. Our study demonstrates how rational ligand design of transition-metal complexes (including underexplored second coordination sphere effects) can be used to enhance their photophysical properties and thereby broaden their application potential in solar energy conversion and synthetic photochemistry.

Journal ArticleDOI
TL;DR: In this article , the intramolecular through-space interaction (TSI) between two vicinal phenyl rings generates the bright blue emission in TPE but not the TBC effect, and the evaluation of excited-state decay dynamics suggests the significance of photoinduced isomerization in the nonradiative decay of TPE in the solution state.
Abstract: Electronic conjugation through covalent bonds is generally considered as the basis for the electronic transition of organic luminescent materials. Tetraphenylethylene (TPE), an efficient fluorophore with aggregation-induced emission character, fluoresces blue emission in the aggregate state, and such photoluminescence is always ascribed to the through-bond conjugation (TBC) among the four phenyl rings and the central C═C bond. However, in this work, systematic spectroscopic studies and DFT theoretical simulation reveal that the intramolecular through-space interaction (TSI) between two vicinal phenyl rings generates the bright blue emission in TPE but not the TBC effect. Furthermore, the evaluation of excited-state decay dynamics suggests the significance of photoinduced isomerization in the nonradiative decay of TPE in the solution state. More importantly, different from the traditional qualitative description for TSI, the quantitative elucidation of the TSI is realized through the atoms-in-molecules analysis; meanwhile, a theoretical solid-state model for TPE and other multirotor systems for studying the electronic configuration is preliminarily established. The mechanistic model of TSI delineated in this work provides a new strategy to design luminescent materials beyond the traditional theory of TBC and expands the quantum understanding of molecular behavior to the aggregate level.